Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-6y=-7
Whakaarohia te whārite tuarua. Tangohia te 6y mai i ngā taha e rua.
x-y=13,x-6y=-7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+13
Me tāpiri y ki ngā taha e rua o te whārite.
y+13-6y=-7
Whakakapia te y+13 mō te x ki tērā atu whārite, x-6y=-7.
-5y+13=-7
Tāpiri y ki te -6y.
-5y=-20
Me tango 13 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -5.
x=4+13
Whakaurua te 4 mō y ki x=y+13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=17
Tāpiri 13 ki te 4.
x=17,y=4
Kua oti te pūnaha te whakatau.
x-6y=-7
Whakaarohia te whārite tuarua. Tangohia te 6y mai i ngā taha e rua.
x-y=13,x-6y=-7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\1&-6\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-6\end{matrix}\right))\left(\begin{matrix}13\\-7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-6\end{matrix}\right))\left(\begin{matrix}13\\-7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-6\end{matrix}\right))\left(\begin{matrix}13\\-7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-\left(-1\right)}&-\frac{-1}{-6-\left(-1\right)}\\-\frac{1}{-6-\left(-1\right)}&\frac{1}{-6-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}13\\-7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&-\frac{1}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}13\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 13-\frac{1}{5}\left(-7\right)\\\frac{1}{5}\times 13-\frac{1}{5}\left(-7\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=17,y=4
Tangohia ngā huānga poukapa x me y.
x-6y=-7
Whakaarohia te whārite tuarua. Tangohia te 6y mai i ngā taha e rua.
x-y=13,x-6y=-7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-y+6y=13+7
Me tango x-6y=-7 mai i x-y=13 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+6y=13+7
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=13+7
Tāpiri -y ki te 6y.
5y=20
Tāpiri 13 ki te 7.
y=4
Whakawehea ngā taha e rua ki te 5.
x-6\times 4=-7
Whakaurua te 4 mō y ki x-6y=-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-24=-7
Whakareatia -6 ki te 4.
x=17
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=17,y=4
Kua oti te pūnaha te whakatau.