Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=10,2x+2y+\frac{1}{2}=200
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+10
Me tāpiri y ki ngā taha e rua o te whārite.
2\left(y+10\right)+2y+\frac{1}{2}=200
Whakakapia te y+10 mō te x ki tērā atu whārite, 2x+2y+\frac{1}{2}=200.
2y+20+2y+\frac{1}{2}=200
Whakareatia 2 ki te y+10.
4y+20+\frac{1}{2}=200
Tāpiri 2y ki te 2y.
4y+\frac{41}{2}=200
Tāpiri 20 ki te \frac{1}{2}.
4y=\frac{359}{2}
Me tango \frac{41}{2} mai i ngā taha e rua o te whārite.
y=\frac{359}{8}
Whakawehea ngā taha e rua ki te 4.
x=\frac{359}{8}+10
Whakaurua te \frac{359}{8} mō y ki x=y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{439}{8}
Tāpiri 10 ki te \frac{359}{8}.
x=\frac{439}{8},y=\frac{359}{8}
Kua oti te pūnaha te whakatau.
x-y=10,2x+2y+\frac{1}{2}=200
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-1}{2-\left(-2\right)}\\-\frac{2}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\-\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 10+\frac{1}{4}\times \frac{399}{2}\\-\frac{1}{2}\times 10+\frac{1}{4}\times \frac{399}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{439}{8}\\\frac{359}{8}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{439}{8},y=\frac{359}{8}
Tangohia ngā huānga poukapa x me y.
x-y=10,2x+2y+\frac{1}{2}=200
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-1\right)y=2\times 10,2x+2y+\frac{1}{2}=200
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-2y=20,2x+2y+\frac{1}{2}=200
Whakarūnātia.
2x-2x-2y-2y-\frac{1}{2}=20-200
Me tango 2x+2y+\frac{1}{2}=200 mai i 2x-2y=20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-2y-\frac{1}{2}=20-200
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y-\frac{1}{2}=20-200
Tāpiri -2y ki te -2y.
-4y-\frac{1}{2}=-180
Tāpiri 20 ki te -200.
-4y=-\frac{359}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
y=\frac{359}{8}
Whakawehea ngā taha e rua ki te -4.
2x+2\times \frac{359}{8}+\frac{1}{2}=200
Whakaurua te \frac{359}{8} mō y ki 2x+2y+\frac{1}{2}=200. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{359}{4}+\frac{1}{2}=200
Whakareatia 2 ki te \frac{359}{8}.
2x+\frac{361}{4}=200
Tāpiri \frac{359}{4} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x=\frac{439}{4}
Me tango \frac{361}{4} mai i ngā taha e rua o te whārite.
x=\frac{439}{8}
Whakawehea ngā taha e rua ki te 2.
x=\frac{439}{8},y=\frac{359}{8}
Kua oti te pūnaha te whakatau.