Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=-5,3x+2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y-5
Me tāpiri y ki ngā taha e rua o te whārite.
3\left(y-5\right)+2y=10
Whakakapia te y-5 mō te x ki tērā atu whārite, 3x+2y=10.
3y-15+2y=10
Whakareatia 3 ki te y-5.
5y-15=10
Tāpiri 3y ki te 2y.
5y=25
Me tāpiri 15 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 5.
x=5-5
Whakaurua te 5 mō y ki x=y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Tāpiri -5 ki te 5.
x=0,y=5
Kua oti te pūnaha te whakatau.
x-y=-5,3x+2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}1&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{-1}{2-\left(-3\right)}\\-\frac{3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-5\right)+\frac{1}{5}\times 10\\-\frac{3}{5}\left(-5\right)+\frac{1}{5}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=5
Tangohia ngā huānga poukapa x me y.
x-y=-5,3x+2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\left(-1\right)y=3\left(-5\right),3x+2y=10
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x-3y=-15,3x+2y=10
Whakarūnātia.
3x-3x-3y-2y=-15-10
Me tango 3x+2y=10 mai i 3x-3y=-15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-2y=-15-10
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-15-10
Tāpiri -3y ki te -2y.
-5y=-25
Tāpiri -15 ki te -10.
y=5
Whakawehea ngā taha e rua ki te -5.
3x+2\times 5=10
Whakaurua te 5 mō y ki 3x+2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+10=10
Whakareatia 2 ki te 5.
3x=0
Me tango 10 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=5
Kua oti te pūnaha te whakatau.