\left\{ \begin{array} { l } { x - y = \frac { 1 } { 4 } } \\ { 3 x ^ { 2 } - 6 = y ^ { 2 } } \end{array} \right.
Whakaoti mō x, y
x=\frac{-\sqrt{195}-1}{8}\approx -1.870530005\text{, }y=\frac{-\sqrt{195}-3}{8}\approx -2.120530005
x=\frac{\sqrt{195}-1}{8}\approx 1.620530005\text{, }y=\frac{\sqrt{195}-3}{8}\approx 1.370530005
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-6-y^{2}=0
Whakaarohia te whārite tuarua. Tangohia te y^{2} mai i ngā taha e rua.
3x^{2}-y^{2}=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-y=\frac{1}{4},-y^{2}+3x^{2}=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=\frac{1}{4}
Whakaotia te x-y=\frac{1}{4} mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+\frac{1}{4}
Me tango -y mai i ngā taha e rua o te whārite.
-y^{2}+3\left(y+\frac{1}{4}\right)^{2}=6
Whakakapia te y+\frac{1}{4} mō te x ki tērā atu whārite, -y^{2}+3x^{2}=6.
-y^{2}+3\left(y^{2}+\frac{1}{2}y+\frac{1}{16}\right)=6
Pūrua y+\frac{1}{4}.
-y^{2}+3y^{2}+\frac{3}{2}y+\frac{3}{16}=6
Whakareatia 3 ki te y^{2}+\frac{1}{2}y+\frac{1}{16}.
2y^{2}+\frac{3}{2}y+\frac{3}{16}=6
Tāpiri -y^{2} ki te 3y^{2}.
2y^{2}+\frac{3}{2}y-\frac{93}{16}=0
Me tango 6 mai i ngā taha e rua o te whārite.
y=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times 2\left(-\frac{93}{16}\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1+3\times 1^{2} mō a, 3\times \frac{1}{4}\times 1\times 2 mō b, me -\frac{93}{16} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times 2\left(-\frac{93}{16}\right)}}{2\times 2}
Pūrua 3\times \frac{1}{4}\times 1\times 2.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-8\left(-\frac{93}{16}\right)}}{2\times 2}
Whakareatia -4 ki te -1+3\times 1^{2}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+\frac{93}{2}}}{2\times 2}
Whakareatia -8 ki te -\frac{93}{16}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{195}{4}}}{2\times 2}
Tāpiri \frac{9}{4} ki te \frac{93}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{2\times 2}
Tuhia te pūtakerua o te \frac{195}{4}.
y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{4}
Whakareatia 2 ki te -1+3\times 1^{2}.
y=\frac{\sqrt{195}-3}{2\times 4}
Nā, me whakaoti te whārite y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{4} ina he tāpiri te ±. Tāpiri -\frac{3}{2} ki te \frac{\sqrt{195}}{2}.
y=\frac{\sqrt{195}-3}{8}
Whakawehe \frac{-3+\sqrt{195}}{2} ki te 4.
y=\frac{-\sqrt{195}-3}{2\times 4}
Nā, me whakaoti te whārite y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{4} ina he tango te ±. Tango \frac{\sqrt{195}}{2} mai i -\frac{3}{2}.
y=\frac{-\sqrt{195}-3}{8}
Whakawehe \frac{-3-\sqrt{195}}{2} ki te 4.
x=\frac{\sqrt{195}-3}{8}+\frac{1}{4}
E rua ngā otinga mō y: \frac{-3+\sqrt{195}}{8} me \frac{-3-\sqrt{195}}{8}. Me whakakapi \frac{-3+\sqrt{195}}{8} mō y ki te whārite x=y+\frac{1}{4} hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{-\sqrt{195}-3}{8}+\frac{1}{4}
Me whakakapi te \frac{-3-\sqrt{195}}{8} ināianei mō te y ki te whārite x=y+\frac{1}{4} ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{\sqrt{195}-3}{8}+\frac{1}{4},y=\frac{\sqrt{195}-3}{8}\text{ or }x=\frac{-\sqrt{195}-3}{8}+\frac{1}{4},y=\frac{-\sqrt{195}-3}{8}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}