Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-6y=3,2x-18y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-6y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=6y+3
Me tāpiri 6y ki ngā taha e rua o te whārite.
2\left(6y+3\right)-18y=-6
Whakakapia te 6y+3 mō te x ki tērā atu whārite, 2x-18y=-6.
12y+6-18y=-6
Whakareatia 2 ki te 6y+3.
-6y+6=-6
Tāpiri 12y ki te -18y.
-6y=-12
Me tango 6 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -6.
x=6\times 2+3
Whakaurua te 2 mō y ki x=6y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12+3
Whakareatia 6 ki te 2.
x=15
Tāpiri 3 ki te 12.
x=15,y=2
Kua oti te pūnaha te whakatau.
x-6y=3,2x-18y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-6\\2&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-\left(-6\times 2\right)}&-\frac{-6}{-18-\left(-6\times 2\right)}\\-\frac{2}{-18-\left(-6\times 2\right)}&\frac{1}{-18-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 3-\left(-6\right)\\\frac{1}{3}\times 3-\frac{1}{6}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=15,y=2
Tangohia ngā huānga poukapa x me y.
x-6y=3,2x-18y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-6\right)y=2\times 3,2x-18y=-6
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-12y=6,2x-18y=-6
Whakarūnātia.
2x-2x-12y+18y=6+6
Me tango 2x-18y=-6 mai i 2x-12y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y+18y=6+6
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=6+6
Tāpiri -12y ki te 18y.
6y=12
Tāpiri 6 ki te 6.
y=2
Whakawehea ngā taha e rua ki te 6.
2x-18\times 2=-6
Whakaurua te 2 mō y ki 2x-18y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-36=-6
Whakareatia -18 ki te 2.
2x=30
Me tāpiri 36 ki ngā taha e rua o te whārite.
x=15
Whakawehea ngā taha e rua ki te 2.
x=15,y=2
Kua oti te pūnaha te whakatau.