Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-4y=5,-2x-y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-4y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=4y+5
Me tāpiri 4y ki ngā taha e rua o te whārite.
-2\left(4y+5\right)-y=4
Whakakapia te 4y+5 mō te x ki tērā atu whārite, -2x-y=4.
-8y-10-y=4
Whakareatia -2 ki te 4y+5.
-9y-10=4
Tāpiri -8y ki te -y.
-9y=14
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=-\frac{14}{9}
Whakawehea ngā taha e rua ki te -9.
x=4\left(-\frac{14}{9}\right)+5
Whakaurua te -\frac{14}{9} mō y ki x=4y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{56}{9}+5
Whakareatia 4 ki te -\frac{14}{9}.
x=-\frac{11}{9}
Tāpiri 5 ki te -\frac{56}{9}.
x=-\frac{11}{9},y=-\frac{14}{9}
Kua oti te pūnaha te whakatau.
x-4y=5,-2x-y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right))\left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-2&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-4\left(-2\right)\right)}&-\frac{-4}{-1-\left(-4\left(-2\right)\right)}\\-\frac{-2}{-1-\left(-4\left(-2\right)\right)}&\frac{1}{-1-\left(-4\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{4}{9}\\-\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 5-\frac{4}{9}\times 4\\-\frac{2}{9}\times 5-\frac{1}{9}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{9}\\-\frac{14}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{11}{9},y=-\frac{14}{9}
Tangohia ngā huānga poukapa x me y.
x-4y=5,-2x-y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\left(-4\right)y=-2\times 5,-2x-y=4
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x+8y=-10,-2x-y=4
Whakarūnātia.
-2x+2x+8y+y=-10-4
Me tango -2x-y=4 mai i -2x+8y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+y=-10-4
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=-10-4
Tāpiri 8y ki te y.
9y=-14
Tāpiri -10 ki te -4.
y=-\frac{14}{9}
Whakawehea ngā taha e rua ki te 9.
-2x-\left(-\frac{14}{9}\right)=4
Whakaurua te -\frac{14}{9} mō y ki -2x-y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=\frac{22}{9}
Me tango \frac{14}{9} mai i ngā taha e rua o te whārite.
x=-\frac{11}{9}
Whakawehea ngā taha e rua ki te -2.
x=-\frac{11}{9},y=-\frac{14}{9}
Kua oti te pūnaha te whakatau.