Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-4y=-1,2x+y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-4y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=4y-1
Me tāpiri 4y ki ngā taha e rua o te whārite.
2\left(4y-1\right)+y=16
Whakakapia te 4y-1 mō te x ki tērā atu whārite, 2x+y=16.
8y-2+y=16
Whakareatia 2 ki te 4y-1.
9y-2=16
Tāpiri 8y ki te y.
9y=18
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 9.
x=4\times 2-1
Whakaurua te 2 mō y ki x=4y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8-1
Whakareatia 4 ki te 2.
x=7
Tāpiri -1 ki te 8.
x=7,y=2
Kua oti te pūnaha te whakatau.
x-4y=-1,2x+y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\times 2\right)}&-\frac{-4}{1-\left(-4\times 2\right)}\\-\frac{2}{1-\left(-4\times 2\right)}&\frac{1}{1-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{4}{9}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\left(-1\right)+\frac{4}{9}\times 16\\-\frac{2}{9}\left(-1\right)+\frac{1}{9}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=2
Tangohia ngā huānga poukapa x me y.
x-4y=-1,2x+y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-4\right)y=2\left(-1\right),2x+y=16
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-8y=-2,2x+y=16
Whakarūnātia.
2x-2x-8y-y=-2-16
Me tango 2x+y=16 mai i 2x-8y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-y=-2-16
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9y=-2-16
Tāpiri -8y ki te -y.
-9y=-18
Tāpiri -2 ki te -16.
y=2
Whakawehea ngā taha e rua ki te -9.
2x+2=16
Whakaurua te 2 mō y ki 2x+y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=14
Me tango 2 mai i ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te 2.
x=7,y=2
Kua oti te pūnaha te whakatau.