\left\{ \begin{array} { l } { x - 4 y + z = - 30 } \\ { 2 x + y - z = 18 ( 2 ) } \\ { x - y - z = 7 } \end{array} \right.
Whakaoti mō x, y, z
x=11
y=9
z=-5
Tohaina
Kua tāruatia ki te papatopenga
x=4y-z-30
Me whakaoti te x-4y+z=-30 mō x.
2\left(4y-z-30\right)+y-z=18\times 2 4y-z-30-y-z=7
Whakakapia te 4y-z-30 mō te x i te whārite tuarua me te tuatoru.
y=\frac{32}{3}+\frac{1}{3}z z=\frac{3}{2}y-\frac{37}{2}
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{3}{2}\left(\frac{32}{3}+\frac{1}{3}z\right)-\frac{37}{2}
Whakakapia te \frac{32}{3}+\frac{1}{3}z mō te y i te whārite z=\frac{3}{2}y-\frac{37}{2}.
z=-5
Me whakaoti te z=\frac{3}{2}\left(\frac{32}{3}+\frac{1}{3}z\right)-\frac{37}{2} mō z.
y=\frac{32}{3}+\frac{1}{3}\left(-5\right)
Whakakapia te -5 mō te z i te whārite y=\frac{32}{3}+\frac{1}{3}z.
y=9
Tātaitia te y i te y=\frac{32}{3}+\frac{1}{3}\left(-5\right).
x=4\times 9-\left(-5\right)-30
Whakakapia te 9 mō te y me te -5 mō z i te whārite x=4y-z-30.
x=11
Tātaitia te x i te x=4\times 9-\left(-5\right)-30.
x=11 y=9 z=-5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}