\left\{ \begin{array} { l } { x - 3 y = 4 } \\ { 5 x + 3 y = - 1 } \end{array} \right.
Whakaoti mō x, y
x=\frac{1}{2}=0.5
y = -\frac{7}{6} = -1\frac{1}{6} \approx -1.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3y=4,5x+3y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y+4
Me tāpiri 3y ki ngā taha e rua o te whārite.
5\left(3y+4\right)+3y=-1
Whakakapia te 3y+4 mō te x ki tērā atu whārite, 5x+3y=-1.
15y+20+3y=-1
Whakareatia 5 ki te 3y+4.
18y+20=-1
Tāpiri 15y ki te 3y.
18y=-21
Me tango 20 mai i ngā taha e rua o te whārite.
y=-\frac{7}{6}
Whakawehea ngā taha e rua ki te 18.
x=3\left(-\frac{7}{6}\right)+4
Whakaurua te -\frac{7}{6} mō y ki x=3y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{7}{2}+4
Whakareatia 3 ki te -\frac{7}{6}.
x=\frac{1}{2}
Tāpiri 4 ki te -\frac{7}{2}.
x=\frac{1}{2},y=-\frac{7}{6}
Kua oti te pūnaha te whakatau.
x-3y=4,5x+3y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 5\right)}&-\frac{-3}{3-\left(-3\times 5\right)}\\-\frac{5}{3-\left(-3\times 5\right)}&\frac{1}{3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{5}{18}&\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 4+\frac{1}{6}\left(-1\right)\\-\frac{5}{18}\times 4+\frac{1}{18}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{7}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=-\frac{7}{6}
Tangohia ngā huānga poukapa x me y.
x-3y=4,5x+3y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+5\left(-3\right)y=5\times 4,5x+3y=-1
Kia ōrite ai a x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5x-15y=20,5x+3y=-1
Whakarūnātia.
5x-5x-15y-3y=20+1
Me tango 5x+3y=-1 mai i 5x-15y=20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y-3y=20+1
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=20+1
Tāpiri -15y ki te -3y.
-18y=21
Tāpiri 20 ki te 1.
y=-\frac{7}{6}
Whakawehea ngā taha e rua ki te -18.
5x+3\left(-\frac{7}{6}\right)=-1
Whakaurua te -\frac{7}{6} mō y ki 5x+3y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-\frac{7}{2}=-1
Whakareatia 3 ki te -\frac{7}{6}.
5x=\frac{5}{2}
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{2},y=-\frac{7}{6}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}