\left\{ \begin{array} { l } { x - 3 y = - \sqrt { 3 } } \\ { - x + 2 y = 0 } \end{array} \right.
Whakaoti mō x, y
x=2\sqrt{3}\approx 3.464101615
y=\sqrt{3}\approx 1.732050808
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3y=-\sqrt{3},-x+2y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=-\sqrt{3}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y-\sqrt{3}
Me tāpiri 3y ki ngā taha e rua o te whārite.
-\left(3y-\sqrt{3}\right)+2y=0
Whakakapia te 3y-\sqrt{3} mō te x ki tērā atu whārite, -x+2y=0.
-3y+\sqrt{3}+2y=0
Whakareatia -1 ki te 3y-\sqrt{3}.
-y+\sqrt{3}=0
Tāpiri -3y ki te 2y.
-y=-\sqrt{3}
Me tango \sqrt{3} mai i ngā taha e rua o te whārite.
y=\sqrt{3}
Whakawehea ngā taha e rua ki te -1.
x=3\sqrt{3}-\sqrt{3}
Whakaurua te \sqrt{3} mō y ki x=3y-\sqrt{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2\sqrt{3}
Tāpiri -\sqrt{3} ki te 3\sqrt{3}.
x=2\sqrt{3},y=\sqrt{3}
Kua oti te pūnaha te whakatau.
x-3y=-\sqrt{3},-x+2y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-\left(-3y\right)=-\left(-\sqrt{3}\right),-x+2y=0
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+3y=\sqrt{3},-x+2y=0
Whakarūnātia.
-x+x+3y-2y=\sqrt{3}
Me tango -x+2y=0 mai i -x+3y=\sqrt{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-2y=\sqrt{3}
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=\sqrt{3}
Tāpiri 3y ki te -2y.
-x+2\sqrt{3}=0
Whakaurua te \sqrt{3} mō y ki -x+2y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=-2\sqrt{3}
Me tango 2\sqrt{3} mai i ngā taha e rua o te whārite.
x=2\sqrt{3}
Whakawehea ngā taha e rua ki te -1.
x=2\sqrt{3},y=\sqrt{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}