\left\{ \begin{array} { l } { x - 3 = y } \\ { \frac { x } { 4 } - 1 = y } \end{array} \right.
Whakaoti mō x, y
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{x}{4}-1-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
\frac{x}{4}-y=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-4y=4
Whakareatia ngā taha e rua o te whārite ki te 4.
x-y=3,x-4y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
y+3-4y=4
Whakakapia te y+3 mō te x ki tērā atu whārite, x-4y=4.
-3y+3=4
Tāpiri y ki te -4y.
-3y=1
Me tango 3 mai i ngā taha e rua o te whārite.
y=-\frac{1}{3}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{1}{3}+3
Whakaurua te -\frac{1}{3} mō y ki x=y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8}{3}
Tāpiri 3 ki te -\frac{1}{3}.
x=\frac{8}{3},y=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
x-3-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{x}{4}-1-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
\frac{x}{4}-y=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-4y=4
Whakareatia ngā taha e rua o te whārite ki te 4.
x-y=3,x-4y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-1\right)}&-\frac{-1}{-4-\left(-1\right)}\\-\frac{1}{-4-\left(-1\right)}&\frac{1}{-4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times 3-\frac{1}{3}\times 4\\\frac{1}{3}\times 3-\frac{1}{3}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{8}{3},y=-\frac{1}{3}
Tangohia ngā huānga poukapa x me y.
x-3-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{x}{4}-1-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
\frac{x}{4}-y=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-4y=4
Whakareatia ngā taha e rua o te whārite ki te 4.
x-y=3,x-4y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-y+4y=3-4
Me tango x-4y=4 mai i x-y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+4y=3-4
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=3-4
Tāpiri -y ki te 4y.
3y=-1
Tāpiri 3 ki te -4.
y=-\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x-4\left(-\frac{1}{3}\right)=4
Whakaurua te -\frac{1}{3} mō y ki x-4y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{4}{3}=4
Whakareatia -4 ki te -\frac{1}{3}.
x=\frac{8}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
x=\frac{8}{3},y=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}