\left\{ \begin{array} { l } { x - 2 y = 17 } \\ { 7 x - 6 y = 47 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2y=17,7x-6y=47
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y+17
Me tāpiri 2y ki ngā taha e rua o te whārite.
7\left(2y+17\right)-6y=47
Whakakapia te 2y+17 mō te x ki tērā atu whārite, 7x-6y=47.
14y+119-6y=47
Whakareatia 7 ki te 2y+17.
8y+119=47
Tāpiri 14y ki te -6y.
8y=-72
Me tango 119 mai i ngā taha e rua o te whārite.
y=-9
Whakawehea ngā taha e rua ki te 8.
x=2\left(-9\right)+17
Whakaurua te -9 mō y ki x=2y+17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-18+17
Whakareatia 2 ki te -9.
x=-1
Tāpiri 17 ki te -18.
x=-1,y=-9
Kua oti te pūnaha te whakatau.
x-2y=17,7x-6y=47
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\47\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\7&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-\left(-2\times 7\right)}&-\frac{-2}{-6-\left(-2\times 7\right)}\\-\frac{7}{-6-\left(-2\times 7\right)}&\frac{1}{-6-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{1}{4}\\-\frac{7}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\times 17+\frac{1}{4}\times 47\\-\frac{7}{8}\times 17+\frac{1}{8}\times 47\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-9
Tangohia ngā huānga poukapa x me y.
x-2y=17,7x-6y=47
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x+7\left(-2\right)y=7\times 17,7x-6y=47
Kia ōrite ai a x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
7x-14y=119,7x-6y=47
Whakarūnātia.
7x-7x-14y+6y=119-47
Me tango 7x-6y=47 mai i 7x-14y=119 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y+6y=119-47
Tāpiri 7x ki te -7x. Ka whakakore atu ngā kupu 7x me -7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=119-47
Tāpiri -14y ki te 6y.
-8y=72
Tāpiri 119 ki te -47.
y=-9
Whakawehea ngā taha e rua ki te -8.
7x-6\left(-9\right)=47
Whakaurua te -9 mō y ki 7x-6y=47. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+54=47
Whakareatia -6 ki te -9.
7x=-7
Me tango 54 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 7.
x=-1,y=-9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}