Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2y=10,2x+3y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y+10
Me tāpiri 2y ki ngā taha e rua o te whārite.
2\left(2y+10\right)+3y=-8
Whakakapia te 10+2y mō te x ki tērā atu whārite, 2x+3y=-8.
4y+20+3y=-8
Whakareatia 2 ki te 10+2y.
7y+20=-8
Tāpiri 4y ki te 3y.
7y=-28
Me tango 20 mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te 7.
x=2\left(-4\right)+10
Whakaurua te -4 mō y ki x=2y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-8+10
Whakareatia 2 ki te -4.
x=2
Tāpiri 10 ki te -8.
x=2,y=-4
Kua oti te pūnaha te whakatau.
x-2y=10,2x+3y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}1&-2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\times 2\right)}&-\frac{-2}{3-\left(-2\times 2\right)}\\-\frac{2}{3-\left(-2\times 2\right)}&\frac{1}{3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}10\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{2}{7}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}10\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 10+\frac{2}{7}\left(-8\right)\\-\frac{2}{7}\times 10+\frac{1}{7}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-4
Tangohia ngā huānga poukapa x me y.
x-2y=10,2x+3y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-2\right)y=2\times 10,2x+3y=-8
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-4y=20,2x+3y=-8
Whakarūnātia.
2x-2x-4y-3y=20+8
Me tango 2x+3y=-8 mai i 2x-4y=20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-3y=20+8
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=20+8
Tāpiri -4y ki te -3y.
-7y=28
Tāpiri 20 ki te 8.
y=-4
Whakawehea ngā taha e rua ki te -7.
2x+3\left(-4\right)=-8
Whakaurua te -4 mō y ki 2x+3y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-12=-8
Whakareatia 3 ki te -4.
2x=4
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 2.
x=2,y=-4
Kua oti te pūnaha te whakatau.