Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2y=-6,6x+3y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y-6
Me tāpiri 2y ki ngā taha e rua o te whārite.
6\left(2y-6\right)+3y=2
Whakakapia te -6+2y mō te x ki tērā atu whārite, 6x+3y=2.
12y-36+3y=2
Whakareatia 6 ki te -6+2y.
15y-36=2
Tāpiri 12y ki te 3y.
15y=38
Me tāpiri 36 ki ngā taha e rua o te whārite.
y=\frac{38}{15}
Whakawehea ngā taha e rua ki te 15.
x=2\times \frac{38}{15}-6
Whakaurua te \frac{38}{15} mō y ki x=2y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{76}{15}-6
Whakareatia 2 ki te \frac{38}{15}.
x=-\frac{14}{15}
Tāpiri -6 ki te \frac{76}{15}.
x=-\frac{14}{15},y=\frac{38}{15}
Kua oti te pūnaha te whakatau.
x-2y=-6,6x+3y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}1&-2\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\times 6\right)}&-\frac{-2}{3-\left(-2\times 6\right)}\\-\frac{6}{3-\left(-2\times 6\right)}&\frac{1}{3-\left(-2\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{15}\\-\frac{2}{5}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{2}{15}\times 2\\-\frac{2}{5}\left(-6\right)+\frac{1}{15}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{15}\\\frac{38}{15}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{14}{15},y=\frac{38}{15}
Tangohia ngā huānga poukapa x me y.
x-2y=-6,6x+3y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+6\left(-2\right)y=6\left(-6\right),6x+3y=2
Kia ōrite ai a x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6x-12y=-36,6x+3y=2
Whakarūnātia.
6x-6x-12y-3y=-36-2
Me tango 6x+3y=2 mai i 6x-12y=-36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-3y=-36-2
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15y=-36-2
Tāpiri -12y ki te -3y.
-15y=-38
Tāpiri -36 ki te -2.
y=\frac{38}{15}
Whakawehea ngā taha e rua ki te -15.
6x+3\times \frac{38}{15}=2
Whakaurua te \frac{38}{15} mō y ki 6x+3y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+\frac{38}{5}=2
Whakareatia 3 ki te \frac{38}{15}.
6x=-\frac{28}{5}
Me tango \frac{38}{5} mai i ngā taha e rua o te whārite.
x=-\frac{14}{15}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{14}{15},y=\frac{38}{15}
Kua oti te pūnaha te whakatau.