\left\{ \begin{array} { l } { x - 2 y + 3 z = 10 } \\ { 2 x + y - 6 z = 1 } \\ { 4 x - 2 y - 9 z = 15 } \end{array} \right.
Whakaoti mō x, y, z
x=3
y=-3
z=\frac{1}{3}\approx 0.333333333
Tohaina
Kua tāruatia ki te papatopenga
x=2y-3z+10
Me whakaoti te x-2y+3z=10 mō x.
2\left(2y-3z+10\right)+y-6z=1 4\left(2y-3z+10\right)-2y-9z=15
Whakakapia te 2y-3z+10 mō te x i te whārite tuarua me te tuatoru.
y=\frac{12}{5}z-\frac{19}{5} z=\frac{2}{7}y+\frac{25}{21}
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{2}{7}\left(\frac{12}{5}z-\frac{19}{5}\right)+\frac{25}{21}
Whakakapia te \frac{12}{5}z-\frac{19}{5} mō te y i te whārite z=\frac{2}{7}y+\frac{25}{21}.
z=\frac{1}{3}
Me whakaoti te z=\frac{2}{7}\left(\frac{12}{5}z-\frac{19}{5}\right)+\frac{25}{21} mō z.
y=\frac{12}{5}\times \frac{1}{3}-\frac{19}{5}
Whakakapia te \frac{1}{3} mō te z i te whārite y=\frac{12}{5}z-\frac{19}{5}.
y=-3
Tātaitia te y i te y=\frac{12}{5}\times \frac{1}{3}-\frac{19}{5}.
x=2\left(-3\right)-3\times \frac{1}{3}+10
Whakakapia te -3 mō te y me te \frac{1}{3} mō z i te whārite x=2y-3z+10.
x=3
Tātaitia te x i te x=2\left(-3\right)-3\times \frac{1}{3}+10.
x=3 y=-3 z=\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}