Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=2y-3z+10
Me whakaoti te x-2y+3z=10 mō x.
2\left(2y-3z+10\right)+y-6z=1 4\left(2y-3z+10\right)-2y-9z=15
Whakakapia te 2y-3z+10 mō te x i te whārite tuarua me te tuatoru.
y=\frac{12}{5}z-\frac{19}{5} z=\frac{2}{7}y+\frac{25}{21}
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{2}{7}\left(\frac{12}{5}z-\frac{19}{5}\right)+\frac{25}{21}
Whakakapia te \frac{12}{5}z-\frac{19}{5} mō te y i te whārite z=\frac{2}{7}y+\frac{25}{21}.
z=\frac{1}{3}
Me whakaoti te z=\frac{2}{7}\left(\frac{12}{5}z-\frac{19}{5}\right)+\frac{25}{21} mō z.
y=\frac{12}{5}\times \frac{1}{3}-\frac{19}{5}
Whakakapia te \frac{1}{3} mō te z i te whārite y=\frac{12}{5}z-\frac{19}{5}.
y=-3
Tātaitia te y i te y=\frac{12}{5}\times \frac{1}{3}-\frac{19}{5}.
x=2\left(-3\right)-3\times \frac{1}{3}+10
Whakakapia te -3 mō te y me te \frac{1}{3} mō z i te whārite x=2y-3z+10.
x=3
Tātaitia te x i te x=2\left(-3\right)-3\times \frac{1}{3}+10.
x=3 y=-3 z=\frac{1}{3}
Kua oti te pūnaha te whakatau.