Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2\left(3y-1\right)=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x-6y+2=-4
Whakareatia -2 ki te 3y-1.
x-6y=-6
Me tango 2 mai i ngā taha e rua o te whārite.
x=6y-6
Me tāpiri 6y ki ngā taha e rua o te whārite.
-\left(-\left(6y-6\right)-7\right)+\frac{2}{3}y=1
Whakakapia te -6+6y mō te x ki tērā atu whārite, -\left(-x-7\right)+\frac{2}{3}y=1.
-\left(-6y+6-7\right)+\frac{2}{3}y=1
Whakareatia -1 ki te -6+6y.
-\left(-6y-1\right)+\frac{2}{3}y=1
Tāpiri 6 ki te -7.
6y+1+\frac{2}{3}y=1
Whakareatia -1 ki te -6y-1.
\frac{20}{3}y+1=1
Tāpiri 6y ki te \frac{2y}{3}.
\frac{20}{3}y=0
Me tango 1 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{20}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-6
Whakaurua te 0 mō y ki x=6y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6,y=0
Kua oti te pūnaha te whakatau.
x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
x-2\left(3y-1\right)=-4
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
x-6y+2=-4
Whakareatia -2 ki te 3y-1.
x-6y=-6
Me tango 2 mai i ngā taha e rua o te whārite.
-\left(-x-7\right)+\frac{2}{3}y=1
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
x+7+\frac{2}{3}y=1
Whakareatia -1 ki te -x-7.
x+\frac{2}{3}y=-6
Me tango 7 mai i ngā taha e rua o te whārite.
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-6\right)}&-\frac{-6}{\frac{2}{3}-\left(-6\right)}\\-\frac{1}{\frac{2}{3}-\left(-6\right)}&\frac{1}{\frac{2}{3}-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{9}{10}\\-\frac{3}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-6\right)+\frac{9}{10}\left(-6\right)\\-\frac{3}{20}\left(-6\right)+\frac{3}{20}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-6,y=0
Tangohia ngā huānga poukapa x me y.