\left\{ \begin{array} { l } { x - 2 = 4 y - 2 } \\ { 4 \frac { 2 } { 2 } + x = y } \\ { 3 z + y = 2 x } \end{array} \right.
Whakaoti mō x, y, z
x = -\frac{20}{3} = -6\frac{2}{3} \approx -6.666666667
y = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
z = -\frac{35}{9} = -3\frac{8}{9} \approx -3.888888889
Tohaina
Kua tāruatia ki te papatopenga
x-2=4y-2 10+2x=2y 3z+y=2x
Me whakarea ia whārite mā te taurea pātahi iti rawa o ngā tauraro kei roto. Whakarūnātia.
x=4y
Me whakaoti te x-2=4y-2 mō x.
10+2\times 4y=2y 3z+y=2\times 4y
Whakakapia te 4y mō te x i te whārite tuarua me te tuatoru.
y=-\frac{5}{3} z=\frac{7}{3}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{7}{3}\left(-\frac{5}{3}\right)
Whakakapia te -\frac{5}{3} mō te y i te whārite z=\frac{7}{3}y.
z=-\frac{35}{9}
Tātaitia te z i te z=\frac{7}{3}\left(-\frac{5}{3}\right).
x=4\left(-\frac{5}{3}\right)
Whakakapia te -\frac{5}{3} mō te y i te whārite x=4y.
x=-\frac{20}{3}
Tātaitia te x i te x=4\left(-\frac{5}{3}\right).
x=-\frac{20}{3} y=-\frac{5}{3} z=-\frac{35}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}