\left\{ \begin{array} { l } { x - 1 = - \frac { 3 } { 2 } ( y + 2 ) } \\ { x + y - 2 = 0 } \end{array} \right.
Whakaoti mō x, y
x=10
y=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-1=-\frac{3}{2}y-3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te y+2.
x-1+\frac{3}{2}y=-3
Me tāpiri te \frac{3}{2}y ki ngā taha e rua.
x+\frac{3}{2}y=-3+1
Me tāpiri te 1 ki ngā taha e rua.
x+\frac{3}{2}y=-2
Tāpirihia te -3 ki te 1, ka -2.
x+y=2
Whakaarohia te whārite tuarua. Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x+\frac{3}{2}y=-2,x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+\frac{3}{2}y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-\frac{3}{2}y-2
Me tango \frac{3y}{2} mai i ngā taha e rua o te whārite.
-\frac{3}{2}y-2+y=2
Whakakapia te -\frac{3y}{2}-2 mō te x ki tērā atu whārite, x+y=2.
-\frac{1}{2}y-2=2
Tāpiri -\frac{3y}{2} ki te y.
-\frac{1}{2}y=4
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-8
Me whakarea ngā taha e rua ki te -2.
x=-\frac{3}{2}\left(-8\right)-2
Whakaurua te -8 mō y ki x=-\frac{3}{2}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12-2
Whakareatia -\frac{3}{2} ki te -8.
x=10
Tāpiri -2 ki te 12.
x=10,y=-8
Kua oti te pūnaha te whakatau.
x-1=-\frac{3}{2}y-3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te y+2.
x-1+\frac{3}{2}y=-3
Me tāpiri te \frac{3}{2}y ki ngā taha e rua.
x+\frac{3}{2}y=-3+1
Me tāpiri te 1 ki ngā taha e rua.
x+\frac{3}{2}y=-2
Tāpirihia te -3 ki te 1, ka -2.
x+y=2
Whakaarohia te whārite tuarua. Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x+\frac{3}{2}y=-2,x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\frac{3}{2}}&-\frac{\frac{3}{2}}{1-\frac{3}{2}}\\-\frac{1}{1-\frac{3}{2}}&\frac{1}{1-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&3\\2&-2\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+3\times 2\\2\left(-2\right)-2\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-8
Tangohia ngā huānga poukapa x me y.
x-1=-\frac{3}{2}y-3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te y+2.
x-1+\frac{3}{2}y=-3
Me tāpiri te \frac{3}{2}y ki ngā taha e rua.
x+\frac{3}{2}y=-3+1
Me tāpiri te 1 ki ngā taha e rua.
x+\frac{3}{2}y=-2
Tāpirihia te -3 ki te 1, ka -2.
x+y=2
Whakaarohia te whārite tuarua. Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x+\frac{3}{2}y=-2,x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+\frac{3}{2}y-y=-2-2
Me tango x+y=2 mai i x+\frac{3}{2}y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{2}y-y=-2-2
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{2}y=-2-2
Tāpiri \frac{3y}{2} ki te -y.
\frac{1}{2}y=-4
Tāpiri -2 ki te -2.
y=-8
Me whakarea ngā taha e rua ki te 2.
x-8=2
Whakaurua te -8 mō y ki x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=10,y=-8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}