\left\{ \begin{array} { l } { x - \frac { y + 3 } { 2 } = 3 x + y + 1 } \\ { \frac { 5 x + y } { 2 } = 2 x - 1 } \end{array} \right.
Whakaoti mō x, y
x=1
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-\left(y+3\right)=6x+2y+2
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
2x-y-3=6x+2y+2
Hei kimi i te tauaro o y+3, kimihia te tauaro o ia taurangi.
2x-y-3-6x=2y+2
Tangohia te 6x mai i ngā taha e rua.
-4x-y-3=2y+2
Pahekotia te 2x me -6x, ka -4x.
-4x-y-3-2y=2
Tangohia te 2y mai i ngā taha e rua.
-4x-3y-3=2
Pahekotia te -y me -2y, ka -3y.
-4x-3y=2+3
Me tāpiri te 3 ki ngā taha e rua.
-4x-3y=5
Tāpirihia te 2 ki te 3, ka 5.
5x+y=4x-2
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
5x+y-4x=-2
Tangohia te 4x mai i ngā taha e rua.
x+y=-2
Pahekotia te 5x me -4x, ka x.
-4x-3y=5,x+y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x-3y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=3y+5
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(3y+5\right)
Whakawehea ngā taha e rua ki te -4.
x=-\frac{3}{4}y-\frac{5}{4}
Whakareatia -\frac{1}{4} ki te 3y+5.
-\frac{3}{4}y-\frac{5}{4}+y=-2
Whakakapia te \frac{-3y-5}{4} mō te x ki tērā atu whārite, x+y=-2.
\frac{1}{4}y-\frac{5}{4}=-2
Tāpiri -\frac{3y}{4} ki te y.
\frac{1}{4}y=-\frac{3}{4}
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.
y=-3
Me whakarea ngā taha e rua ki te 4.
x=-\frac{3}{4}\left(-3\right)-\frac{5}{4}
Whakaurua te -3 mō y ki x=-\frac{3}{4}y-\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-5}{4}
Whakareatia -\frac{3}{4} ki te -3.
x=1
Tāpiri -\frac{5}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-3
Kua oti te pūnaha te whakatau.
2x-\left(y+3\right)=6x+2y+2
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
2x-y-3=6x+2y+2
Hei kimi i te tauaro o y+3, kimihia te tauaro o ia taurangi.
2x-y-3-6x=2y+2
Tangohia te 6x mai i ngā taha e rua.
-4x-y-3=2y+2
Pahekotia te 2x me -6x, ka -4x.
-4x-y-3-2y=2
Tangohia te 2y mai i ngā taha e rua.
-4x-3y-3=2
Pahekotia te -y me -2y, ka -3y.
-4x-3y=2+3
Me tāpiri te 3 ki ngā taha e rua.
-4x-3y=5
Tāpirihia te 2 ki te 3, ka 5.
5x+y=4x-2
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
5x+y-4x=-2
Tangohia te 4x mai i ngā taha e rua.
x+y=-2
Pahekotia te 5x me -4x, ka x.
-4x-3y=5,x+y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-4&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-4-\left(-3\right)}&-\frac{-3}{-4-\left(-3\right)}\\-\frac{1}{-4-\left(-3\right)}&-\frac{4}{-4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\1&4\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5-3\left(-2\right)\\5+4\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-3
Tangohia ngā huānga poukapa x me y.
2x-\left(y+3\right)=6x+2y+2
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
2x-y-3=6x+2y+2
Hei kimi i te tauaro o y+3, kimihia te tauaro o ia taurangi.
2x-y-3-6x=2y+2
Tangohia te 6x mai i ngā taha e rua.
-4x-y-3=2y+2
Pahekotia te 2x me -6x, ka -4x.
-4x-y-3-2y=2
Tangohia te 2y mai i ngā taha e rua.
-4x-3y-3=2
Pahekotia te -y me -2y, ka -3y.
-4x-3y=2+3
Me tāpiri te 3 ki ngā taha e rua.
-4x-3y=5
Tāpirihia te 2 ki te 3, ka 5.
5x+y=4x-2
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
5x+y-4x=-2
Tangohia te 4x mai i ngā taha e rua.
x+y=-2
Pahekotia te 5x me -4x, ka x.
-4x-3y=5,x+y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-3y=5,-4x-4y=-4\left(-2\right)
Kia ōrite ai a -4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
-4x-3y=5,-4x-4y=8
Whakarūnātia.
-4x+4x-3y+4y=5-8
Me tango -4x-4y=8 mai i -4x-3y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+4y=5-8
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=5-8
Tāpiri -3y ki te 4y.
y=-3
Tāpiri 5 ki te -8.
x-3=-2
Whakaurua te -3 mō y ki x+y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=1,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}