\left\{ \begin{array} { l } { x \sqrt { 2 } - y \sqrt { 5 } = 2 \sqrt { 10 } } \\ { x \sqrt { 5 } + y \sqrt { 2 } = 3 } \end{array} \right.
Whakaoti mō x, y
x=\sqrt{5}\approx 2.236067977
y=-\sqrt{2}\approx -1.414213562
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2}x-\sqrt{5}y=2\sqrt{10}
Whakaarohia te whārite tuatahi. Whakaraupapatia anō ngā kīanga tau.
\sqrt{2}x+\left(-\sqrt{5}\right)y=2\sqrt{10},\sqrt{5}x+\sqrt{2}y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\sqrt{2}x+\left(-\sqrt{5}\right)y=2\sqrt{10}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\sqrt{2}x=\sqrt{5}y+2\sqrt{10}
Me tāpiri \sqrt{5}y ki ngā taha e rua o te whārite.
x=\frac{\sqrt{2}}{2}\left(\sqrt{5}y+2\sqrt{10}\right)
Whakawehea ngā taha e rua ki te \sqrt{2}.
x=\frac{\sqrt{10}}{2}y+2\sqrt{5}
Whakareatia \frac{\sqrt{2}}{2} ki te \sqrt{5}y+2\sqrt{10}.
\sqrt{5}\left(\frac{\sqrt{10}}{2}y+2\sqrt{5}\right)+\sqrt{2}y=3
Whakakapia te \frac{\sqrt{10}y}{2}+2\sqrt{5} mō te x ki tērā atu whārite, \sqrt{5}x+\sqrt{2}y=3.
\frac{5\sqrt{2}}{2}y+10+\sqrt{2}y=3
Whakareatia \sqrt{5} ki te \frac{\sqrt{10}y}{2}+2\sqrt{5}.
\frac{7\sqrt{2}}{2}y+10=3
Tāpiri \frac{5\sqrt{2}y}{2} ki te \sqrt{2}y.
\frac{7\sqrt{2}}{2}y=-7
Me tango 10 mai i ngā taha e rua o te whārite.
y=-\sqrt{2}
Whakawehea ngā taha e rua ki te \frac{7\sqrt{2}}{2}.
x=\frac{\sqrt{10}}{2}\left(-\sqrt{2}\right)+2\sqrt{5}
Whakaurua te -\sqrt{2} mō y ki x=\frac{\sqrt{10}}{2}y+2\sqrt{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\sqrt{5}+2\sqrt{5}
Whakareatia \frac{\sqrt{10}}{2} ki te -\sqrt{2}.
x=\sqrt{5}
Tāpiri 2\sqrt{5} ki te -\sqrt{5}.
x=\sqrt{5},y=-\sqrt{2}
Kua oti te pūnaha te whakatau.
\sqrt{2}x-\sqrt{5}y=2\sqrt{10}
Whakaarohia te whārite tuatahi. Whakaraupapatia anō ngā kīanga tau.
\sqrt{2}x+\left(-\sqrt{5}\right)y=2\sqrt{10},\sqrt{5}x+\sqrt{2}y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\sqrt{5}\sqrt{2}x+\sqrt{5}\left(-\sqrt{5}\right)y=\sqrt{5}\times 2\sqrt{10},\sqrt{2}\sqrt{5}x+\sqrt{2}\sqrt{2}y=\sqrt{2}\times 3
Kia ōrite ai a \sqrt{2}x me \sqrt{5}x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \sqrt{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \sqrt{2}.
\sqrt{10}x-5y=10\sqrt{2},\sqrt{10}x+2y=3\sqrt{2}
Whakarūnātia.
\sqrt{10}x+\left(-\sqrt{10}\right)x-5y-2y=10\sqrt{2}-3\sqrt{2}
Me tango \sqrt{10}x+2y=3\sqrt{2} mai i \sqrt{10}x-5y=10\sqrt{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-2y=10\sqrt{2}-3\sqrt{2}
Tāpiri \sqrt{10}x ki te -\sqrt{10}x. Ka whakakore atu ngā kupu \sqrt{10}x me -\sqrt{10}x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=10\sqrt{2}-3\sqrt{2}
Tāpiri -5y ki te -2y.
-7y=7\sqrt{2}
Tāpiri 10\sqrt{2} ki te -3\sqrt{2}.
y=-\sqrt{2}
Whakawehea ngā taha e rua ki te -7.
\sqrt{5}x+\sqrt{2}\left(-\sqrt{2}\right)=3
Whakaurua te -\sqrt{2} mō y ki \sqrt{5}x+\sqrt{2}y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\sqrt{5}x-2=3
Whakareatia \sqrt{2} ki te -\sqrt{2}.
\sqrt{5}x=5
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=\sqrt{5}
Whakawehea ngā taha e rua ki te \sqrt{5}.
x=\sqrt{5},y=-\sqrt{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}