\left\{ \begin{array} { l } { x \sqrt { 2 } + y \sqrt { 3 } = 5 } \\ { x \sqrt { 3 } - y \sqrt { 2 } = 0 } \end{array} \right.
Whakaoti mō x, y
x=\sqrt{2}\approx 1.414213562
y=\sqrt{3}\approx 1.732050808
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3}x-\sqrt{2}y=0
Whakaarohia te whārite tuarua. Whakaraupapatia anō ngā kīanga tau.
\sqrt{2}x+\sqrt{3}y=5,\sqrt{3}x+\left(-\sqrt{2}\right)y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\sqrt{2}x+\sqrt{3}y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\sqrt{2}x=\left(-\sqrt{3}\right)y+5
Me tango \sqrt{3}y mai i ngā taha e rua o te whārite.
x=\frac{\sqrt{2}}{2}\left(\left(-\sqrt{3}\right)y+5\right)
Whakawehea ngā taha e rua ki te \sqrt{2}.
x=\left(-\frac{\sqrt{6}}{2}\right)y+\frac{5\sqrt{2}}{2}
Whakareatia \frac{\sqrt{2}}{2} ki te -\sqrt{3}y+5.
\sqrt{3}\left(\left(-\frac{\sqrt{6}}{2}\right)y+\frac{5\sqrt{2}}{2}\right)+\left(-\sqrt{2}\right)y=0
Whakakapia te \frac{-\sqrt{6}y+5\sqrt{2}}{2} mō te x ki tērā atu whārite, \sqrt{3}x+\left(-\sqrt{2}\right)y=0.
\left(-\frac{3\sqrt{2}}{2}\right)y+\frac{5\sqrt{6}}{2}+\left(-\sqrt{2}\right)y=0
Whakareatia \sqrt{3} ki te \frac{-\sqrt{6}y+5\sqrt{2}}{2}.
\left(-\frac{5\sqrt{2}}{2}\right)y+\frac{5\sqrt{6}}{2}=0
Tāpiri -\frac{3\sqrt{2}y}{2} ki te -\sqrt{2}y.
\left(-\frac{5\sqrt{2}}{2}\right)y=-\frac{5\sqrt{6}}{2}
Me tango \frac{5\sqrt{6}}{2} mai i ngā taha e rua o te whārite.
y=\sqrt{3}
Whakawehea ngā taha e rua ki te -\frac{5\sqrt{2}}{2}.
x=\left(-\frac{\sqrt{6}}{2}\right)\sqrt{3}+\frac{5\sqrt{2}}{2}
Whakaurua te \sqrt{3} mō y ki x=\left(-\frac{\sqrt{6}}{2}\right)y+\frac{5\sqrt{2}}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3\sqrt{2}+5\sqrt{2}}{2}
Whakareatia -\frac{\sqrt{6}}{2} ki te \sqrt{3}.
x=\sqrt{2}
Tāpiri \frac{5\sqrt{2}}{2} ki te -\frac{3\sqrt{2}}{2}.
x=\sqrt{2},y=\sqrt{3}
Kua oti te pūnaha te whakatau.
\sqrt{3}x-\sqrt{2}y=0
Whakaarohia te whārite tuarua. Whakaraupapatia anō ngā kīanga tau.
\sqrt{2}x+\sqrt{3}y=5,\sqrt{3}x+\left(-\sqrt{2}\right)y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\sqrt{3}\sqrt{2}x+\sqrt{3}\sqrt{3}y=\sqrt{3}\times 5,\sqrt{2}\sqrt{3}x+\sqrt{2}\left(-\sqrt{2}\right)y=0
Kia ōrite ai a \sqrt{2}x me \sqrt{3}x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \sqrt{3} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \sqrt{2}.
\sqrt{6}x+3y=5\sqrt{3},\sqrt{6}x-2y=0
Whakarūnātia.
\sqrt{6}x+\left(-\sqrt{6}\right)x+3y+2y=5\sqrt{3}
Me tango \sqrt{6}x-2y=0 mai i \sqrt{6}x+3y=5\sqrt{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+2y=5\sqrt{3}
Tāpiri \sqrt{6}x ki te -\sqrt{6}x. Ka whakakore atu ngā kupu \sqrt{6}x me -\sqrt{6}x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=5\sqrt{3}
Tāpiri 3y ki te 2y.
y=\sqrt{3}
Whakawehea ngā taha e rua ki te 5.
\sqrt{3}x+\left(-\sqrt{2}\right)\sqrt{3}=0
Whakaurua te \sqrt{3} mō y ki \sqrt{3}x+\left(-\sqrt{2}\right)y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\sqrt{3}x-\sqrt{6}=0
Whakareatia -\sqrt{2} ki te \sqrt{3}.
\sqrt{3}x=\sqrt{6}
Me tāpiri \sqrt{6} ki ngā taha e rua o te whārite.
x=\sqrt{2}
Whakawehea ngā taha e rua ki te \sqrt{3}.
x=\sqrt{2},y=\sqrt{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}