\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 0 } \\ { x ^ { 2 } - y ^ { 2 } - z + 1 = 0 } \end{array} \right.
Whakaoti mō x, y, z
x=\frac{\sqrt{10}i}{4}\approx 0.790569415i\text{, }y=-\frac{\sqrt{14}}{4}\approx -0.935414347\text{, }z=-\frac{1}{2}=-0.5
x=-\frac{\sqrt{10}i}{4}\approx -0-0.790569415i\text{, }y=-\frac{\sqrt{14}}{4}\approx -0.935414347\text{, }z=-\frac{1}{2}=-0.5
x=\frac{\sqrt{10}i}{4}\approx 0.790569415i\text{, }y=\frac{\sqrt{14}}{4}\approx 0.935414347\text{, }z=-\frac{1}{2}=-0.5
x=-\frac{\sqrt{10}i}{4}\approx -0-0.790569415i\text{, }y=\frac{\sqrt{14}}{4}\approx 0.935414347\text{, }z=-\frac{1}{2}=-0.5
x=\frac{\sqrt{2\left(z^{2}+z-1\right)}}{2}\text{, }y=-\frac{\sqrt{2\left(z^{2}-z+1\right)}}{2}\text{, }z\in \mathrm{C}
x=-\frac{\sqrt{2\left(z^{2}+z-1\right)}}{2}\text{, }y=-\frac{\sqrt{2\left(z^{2}-z+1\right)}}{2}\text{, }z\in \mathrm{C}
x=\frac{\sqrt{2\left(z^{2}+z-1\right)}}{2}\text{, }y=\frac{\sqrt{2\left(z^{2}-z+1\right)}}{2}\text{, }z\in \mathrm{C}
x=-\frac{\sqrt{2\left(z^{2}+z-1\right)}}{2}\text{, }y=\frac{\sqrt{2\left(z^{2}-z+1\right)}}{2}\text{, }z\in \mathrm{C}
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}