\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 9 } \\ { x + y = a } \end{array} \right.
Whakaoti mō x, y (complex solution)
x=\frac{\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{-\sqrt{18-a^{2}}+a}{2}
x=\frac{-\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{\sqrt{18-a^{2}}+a}{2}
Whakaoti mō x, y
x=\frac{\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{-\sqrt{18-a^{2}}+a}{2}
x=\frac{-\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{\sqrt{18-a^{2}}+a}{2}\text{, }|a|\leq 3\sqrt{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=a
Whakaotia te x+y=a mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+a
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+a\right)^{2}=9
Whakakapia te -y+a mō te x ki tērā atu whārite, y^{2}+x^{2}=9.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
Pūrua -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=9
Tāpiri y^{2} ki te y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-9=0
Me tango 9 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\left(-1\right)\times 2a mō b, me -9+a^{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Pūrua 1\left(-1\right)\times 2a.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Whakareatia -8 ki te -9+a^{2}.
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
Tāpiri 4a^{2} ki te 72-8a^{2}.
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
Tuhia te pūtakerua o te 72-4a^{2}.
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
Nā, me whakaoti te whārite y=\frac{2a±2\sqrt{18-a^{2}}}{4} ina he tāpiri te ±. Tāpiri 2a ki te 2\sqrt{18-a^{2}}.
y=\frac{\sqrt{18-a^{2}}+a}{2}
Whakawehe 2a+2\sqrt{18-a^{2}} ki te 4.
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
Nā, me whakaoti te whārite y=\frac{2a±2\sqrt{18-a^{2}}}{4} ina he tango te ±. Tango 2\sqrt{18-a^{2}} mai i 2a.
y=\frac{-\sqrt{18-a^{2}}+a}{2}
Whakawehe 2a-2\sqrt{18-a^{2}} ki te 4.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
E rua ngā otinga mō y: \frac{a+\sqrt{18-a^{2}}}{2} me \frac{a-\sqrt{18-a^{2}}}{2}. Me whakakapi \frac{a+\sqrt{18-a^{2}}}{2} mō y ki te whārite x=-y+a hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
Me whakakapi te \frac{a-\sqrt{18-a^{2}}}{2} ināianei mō te y ki te whārite x=-y+a ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
Kua oti te pūnaha te whakatau.
x+y=a,y^{2}+x^{2}=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=a
Whakaotia te x+y=a mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+a
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+a\right)^{2}=9
Whakakapia te -y+a mō te x ki tērā atu whārite, y^{2}+x^{2}=9.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
Pūrua -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=9
Tāpiri y^{2} ki te y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-9=0
Me tango 9 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\left(-1\right)\times 2a mō b, me -9+a^{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Pūrua 1\left(-1\right)\times 2a.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Whakareatia -8 ki te -9+a^{2}.
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
Tāpiri 4a^{2} ki te 72-8a^{2}.
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
Tuhia te pūtakerua o te 72-4a^{2}.
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
Nā, me whakaoti te whārite y=\frac{2a±2\sqrt{18-a^{2}}}{4} ina he tāpiri te ±. Tāpiri 2a ki te 2\sqrt{18-a^{2}}.
y=\frac{\sqrt{18-a^{2}}+a}{2}
Whakawehe 2a+2\sqrt{18-a^{2}} ki te 4.
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
Nā, me whakaoti te whārite y=\frac{2a±2\sqrt{18-a^{2}}}{4} ina he tango te ±. Tango 2\sqrt{18-a^{2}} mai i 2a.
y=\frac{-\sqrt{18-a^{2}}+a}{2}
Whakawehe 2a-2\sqrt{18-a^{2}} ki te 4.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
E rua ngā otinga mō y: \frac{a+\sqrt{18-a^{2}}}{2} me \frac{a-\sqrt{18-a^{2}}}{2}. Me whakakapi \frac{a+\sqrt{18-a^{2}}}{2} mō y ki te whārite x=-y+a hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
Me whakakapi te \frac{a-\sqrt{18-a^{2}}}{2} ināianei mō te y ki te whārite x=-y+a ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}