\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 16 } \\ { x + y = \sqrt { 26 } } \end{array} \right.
Whakaoti mō x, y
x=\frac{\sqrt{6}+\sqrt{26}}{2}\approx 3.774254628\text{, }y=\frac{\sqrt{26}-\sqrt{6}}{2}\approx 1.324764885
x=\frac{\sqrt{26}-\sqrt{6}}{2}\approx 1.324764885\text{, }y=\frac{\sqrt{6}+\sqrt{26}}{2}\approx 3.774254628
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=\sqrt{26},y^{2}+x^{2}=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=\sqrt{26}
Whakaotia te x+y=\sqrt{26} mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+\sqrt{26}
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+\sqrt{26}\right)^{2}=16
Whakakapia te -y+\sqrt{26} mō te x ki tērā atu whārite, y^{2}+x^{2}=16.
y^{2}+y^{2}+\left(-2\sqrt{26}\right)y+\left(\sqrt{26}\right)^{2}=16
Pūrua -y+\sqrt{26}.
2y^{2}+\left(-2\sqrt{26}\right)y+\left(\sqrt{26}\right)^{2}=16
Tāpiri y^{2} ki te y^{2}.
2y^{2}+\left(-2\sqrt{26}\right)y+\left(\sqrt{26}\right)^{2}-16=0
Me tango 16 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-2\sqrt{26}\right)±\sqrt{\left(-2\sqrt{26}\right)^{2}-4\times 2\times 10}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\left(-1\right)\times 2\sqrt{26} mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\sqrt{26}\right)±\sqrt{104-4\times 2\times 10}}{2\times 2}
Pūrua 1\left(-1\right)\times 2\sqrt{26}.
y=\frac{-\left(-2\sqrt{26}\right)±\sqrt{104-8\times 10}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2\sqrt{26}\right)±\sqrt{104-80}}{2\times 2}
Whakareatia -8 ki te 10.
y=\frac{-\left(-2\sqrt{26}\right)±\sqrt{24}}{2\times 2}
Tāpiri 104 ki te -80.
y=\frac{-\left(-2\sqrt{26}\right)±2\sqrt{6}}{2\times 2}
Tuhia te pūtakerua o te 24.
y=\frac{2\sqrt{26}±2\sqrt{6}}{2\times 2}
Ko te tauaro o 1\left(-1\right)\times 2\sqrt{26} ko 2\sqrt{26}.
y=\frac{2\sqrt{26}±2\sqrt{6}}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{6}+2\sqrt{26}}{4}
Nā, me whakaoti te whārite y=\frac{2\sqrt{26}±2\sqrt{6}}{4} ina he tāpiri te ±. Tāpiri 2\sqrt{26} ki te 2\sqrt{6}.
y=\frac{\sqrt{6}+\sqrt{26}}{2}
Whakawehe 2\sqrt{26}+2\sqrt{6} ki te 4.
y=\frac{2\sqrt{26}-2\sqrt{6}}{4}
Nā, me whakaoti te whārite y=\frac{2\sqrt{26}±2\sqrt{6}}{4} ina he tango te ±. Tango 2\sqrt{6} mai i 2\sqrt{26}.
y=\frac{\sqrt{26}-\sqrt{6}}{2}
Whakawehe 2\sqrt{26}-2\sqrt{6} ki te 4.
x=-\frac{\sqrt{6}+\sqrt{26}}{2}+\sqrt{26}
E rua ngā otinga mō y: \frac{\sqrt{26}+\sqrt{6}}{2} me \frac{\sqrt{26}-\sqrt{6}}{2}. Me whakakapi \frac{\sqrt{26}+\sqrt{6}}{2} mō y ki te whārite x=-y+\sqrt{26} hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{\sqrt{26}-\sqrt{6}}{2}+\sqrt{26}
Me whakakapi te \frac{\sqrt{26}-\sqrt{6}}{2} ināianei mō te y ki te whārite x=-y+\sqrt{26} ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{\sqrt{6}+\sqrt{26}}{2}+\sqrt{26},y=\frac{\sqrt{6}+\sqrt{26}}{2}\text{ or }x=-\frac{\sqrt{26}-\sqrt{6}}{2}+\sqrt{26},y=\frac{\sqrt{26}-\sqrt{6}}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}