Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=1,y^{2}+x^{2}=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=1
Whakaotia te x+y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+1\right)^{2}=1
Whakakapia te -y+1 mō te x ki tērā atu whārite, y^{2}+x^{2}=1.
y^{2}+y^{2}-2y+1=1
Pūrua -y+1.
2y^{2}-2y+1=1
Tāpiri y^{2} ki te y^{2}.
2y^{2}-2y=0
Me tango 1 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 1\left(-1\right)\times 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±2}{2\times 2}
Tuhia te pūtakerua o te \left(-2\right)^{2}.
y=\frac{2±2}{2\times 2}
Ko te tauaro o 1\times 1\left(-1\right)\times 2 ko 2.
y=\frac{2±2}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{4}{4}
Nā, me whakaoti te whārite y=\frac{2±2}{4} ina he tāpiri te ±. Tāpiri 2 ki te 2.
y=1
Whakawehe 4 ki te 4.
y=\frac{0}{4}
Nā, me whakaoti te whārite y=\frac{2±2}{4} ina he tango te ±. Tango 2 mai i 2.
y=0
Whakawehe 0 ki te 4.
x=-1+1
E rua ngā otinga mō y: 1 me 0. Me whakakapi 1 mō y ki te whārite x=-y+1 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=0
Tāpiri -1 ki te 1.
x=1
Me whakakapi te 0 ināianei mō te y ki te whārite x=-y+1 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=0,y=1\text{ or }x=1,y=0
Kua oti te pūnaha te whakatau.