\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 1 } \\ { x + y = 1 } \end{array} \right.
Whakaoti mō x, y
x=0\text{, }y=1
x=1\text{, }y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=1,y^{2}+x^{2}=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=1
Whakaotia te x+y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+1\right)^{2}=1
Whakakapia te -y+1 mō te x ki tērā atu whārite, y^{2}+x^{2}=1.
y^{2}+y^{2}-2y+1=1
Pūrua -y+1.
2y^{2}-2y+1=1
Tāpiri y^{2} ki te y^{2}.
2y^{2}-2y=0
Me tango 1 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 1\left(-1\right)\times 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±2}{2\times 2}
Tuhia te pūtakerua o te \left(-2\right)^{2}.
y=\frac{2±2}{2\times 2}
Ko te tauaro o 1\times 1\left(-1\right)\times 2 ko 2.
y=\frac{2±2}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{4}{4}
Nā, me whakaoti te whārite y=\frac{2±2}{4} ina he tāpiri te ±. Tāpiri 2 ki te 2.
y=1
Whakawehe 4 ki te 4.
y=\frac{0}{4}
Nā, me whakaoti te whārite y=\frac{2±2}{4} ina he tango te ±. Tango 2 mai i 2.
y=0
Whakawehe 0 ki te 4.
x=-1+1
E rua ngā otinga mō y: 1 me 0. Me whakakapi 1 mō y ki te whārite x=-y+1 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=0
Tāpiri -1 ki te 1.
x=1
Me whakakapi te 0 ināianei mō te y ki te whārite x=-y+1 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=0,y=1\text{ or }x=1,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}