\left\{ \begin{array} { l } { x = 3 y } \\ { 2 y - 3 x = 28 } \end{array} \right.
Whakaoti mō x, y
x=-12
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-3y=0,-3x+2y=28
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y
Me tāpiri 3y ki ngā taha e rua o te whārite.
-3\times 3y+2y=28
Whakakapia te 3y mō te x ki tērā atu whārite, -3x+2y=28.
-9y+2y=28
Whakareatia -3 ki te 3y.
-7y=28
Tāpiri -9y ki te 2y.
y=-4
Whakawehea ngā taha e rua ki te -7.
x=3\left(-4\right)
Whakaurua te -4 mō y ki x=3y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-12
Whakareatia 3 ki te -4.
x=-12,y=-4
Kua oti te pūnaha te whakatau.
x-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-3y=0,-3x+2y=28
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\28\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\-3&2\end{matrix}\right))\left(\begin{matrix}1&-3\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-3&2\end{matrix}\right))\left(\begin{matrix}0\\28\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-3&2\end{matrix}\right))\left(\begin{matrix}0\\28\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-3&2\end{matrix}\right))\left(\begin{matrix}0\\28\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\left(-3\right)\right)}&-\frac{-3}{2-\left(-3\left(-3\right)\right)}\\-\frac{-3}{2-\left(-3\left(-3\right)\right)}&\frac{1}{2-\left(-3\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\28\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&-\frac{3}{7}\\-\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}0\\28\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\times 28\\-\frac{1}{7}\times 28\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-12,y=-4
Tangohia ngā huānga poukapa x me y.
x-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-3y=0,-3x+2y=28
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-3\left(-3\right)y=0,-3x+2y=28
Kia ōrite ai a x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3x+9y=0,-3x+2y=28
Whakarūnātia.
-3x+3x+9y-2y=-28
Me tango -3x+2y=28 mai i -3x+9y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-2y=-28
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=-28
Tāpiri 9y ki te -2y.
y=-4
Whakawehea ngā taha e rua ki te 7.
-3x+2\left(-4\right)=28
Whakaurua te -4 mō y ki -3x+2y=28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x-8=28
Whakareatia 2 ki te -4.
-3x=36
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=-12
Whakawehea ngā taha e rua ki te -3.
x=-12,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}