\left\{ \begin{array} { l } { x = 3 y + 4 } \\ { y = \frac { 1 } { 2 } x - \frac { 8 } { 3 } } \end{array} \right.
Whakaoti mō x, y
x=8
y = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3y=4
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
y-\frac{1}{2}x=-\frac{8}{3}
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
x-3y=4,-\frac{1}{2}x+y=-\frac{8}{3}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y+4
Me tāpiri 3y ki ngā taha e rua o te whārite.
-\frac{1}{2}\left(3y+4\right)+y=-\frac{8}{3}
Whakakapia te 3y+4 mō te x ki tērā atu whārite, -\frac{1}{2}x+y=-\frac{8}{3}.
-\frac{3}{2}y-2+y=-\frac{8}{3}
Whakareatia -\frac{1}{2} ki te 3y+4.
-\frac{1}{2}y-2=-\frac{8}{3}
Tāpiri -\frac{3y}{2} ki te y.
-\frac{1}{2}y=-\frac{2}{3}
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=\frac{4}{3}
Me whakarea ngā taha e rua ki te -2.
x=3\times \frac{4}{3}+4
Whakaurua te \frac{4}{3} mō y ki x=3y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4+4
Whakareatia 3 ki te \frac{4}{3}.
x=8
Tāpiri 4 ki te 4.
x=8,y=\frac{4}{3}
Kua oti te pūnaha te whakatau.
x-3y=4
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
y-\frac{1}{2}x=-\frac{8}{3}
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
x-3y=4,-\frac{1}{2}x+y=-\frac{8}{3}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\left(-\frac{1}{2}\right)\right)}&-\frac{-3}{1-\left(-3\left(-\frac{1}{2}\right)\right)}\\-\frac{-\frac{1}{2}}{1-\left(-3\left(-\frac{1}{2}\right)\right)}&\frac{1}{1-\left(-3\left(-\frac{1}{2}\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-6\\-1&-2\end{matrix}\right)\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 4-6\left(-\frac{8}{3}\right)\\-4-2\left(-\frac{8}{3}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\\frac{4}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=\frac{4}{3}
Tangohia ngā huānga poukapa x me y.
x-3y=4
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
y-\frac{1}{2}x=-\frac{8}{3}
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
x-3y=4,-\frac{1}{2}x+y=-\frac{8}{3}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-\frac{1}{2}x-\frac{1}{2}\left(-3\right)y=-\frac{1}{2}\times 4,-\frac{1}{2}x+y=-\frac{8}{3}
Kia ōrite ai a x me -\frac{x}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -\frac{1}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-\frac{1}{2}x+\frac{3}{2}y=-2,-\frac{1}{2}x+y=-\frac{8}{3}
Whakarūnātia.
-\frac{1}{2}x+\frac{1}{2}x+\frac{3}{2}y-y=-2+\frac{8}{3}
Me tango -\frac{1}{2}x+y=-\frac{8}{3} mai i -\frac{1}{2}x+\frac{3}{2}y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{2}y-y=-2+\frac{8}{3}
Tāpiri -\frac{x}{2} ki te \frac{x}{2}. Ka whakakore atu ngā kupu -\frac{x}{2} me \frac{x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{2}y=-2+\frac{8}{3}
Tāpiri \frac{3y}{2} ki te -y.
\frac{1}{2}y=\frac{2}{3}
Tāpiri -2 ki te \frac{8}{3}.
y=\frac{4}{3}
Me whakarea ngā taha e rua ki te 2.
-\frac{1}{2}x+\frac{4}{3}=-\frac{8}{3}
Whakaurua te \frac{4}{3} mō y ki -\frac{1}{2}x+y=-\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-\frac{1}{2}x=-4
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
x=8
Me whakarea ngā taha e rua ki te -2.
x=8,y=\frac{4}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}