\left\{ \begin{array} { l } { x = 2 y } \\ { y = 3 x - 10 } \end{array} \right.
Whakaoti mō x, y
x=4
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2y=0
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
y-3x=-10
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
x-2y=0,-3x+y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y
Me tāpiri 2y ki ngā taha e rua o te whārite.
-3\times 2y+y=-10
Whakakapia te 2y mō te x ki tērā atu whārite, -3x+y=-10.
-6y+y=-10
Whakareatia -3 ki te 2y.
-5y=-10
Tāpiri -6y ki te y.
y=2
Whakawehea ngā taha e rua ki te -5.
x=2\times 2
Whakaurua te 2 mō y ki x=2y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Whakareatia 2 ki te 2.
x=4,y=2
Kua oti te pūnaha te whakatau.
x-2y=0
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
y-3x=-10
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
x-2y=0,-3x+y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}0\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\left(-3\right)\right)}&-\frac{-2}{1-\left(-2\left(-3\right)\right)}\\-\frac{-3}{1-\left(-2\left(-3\right)\right)}&\frac{1}{1-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{2}{5}\\-\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)\\-\frac{1}{5}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
x-2y=0
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
y-3x=-10
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
x-2y=0,-3x+y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-3\left(-2\right)y=0,-3x+y=-10
Kia ōrite ai a x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3x+6y=0,-3x+y=-10
Whakarūnātia.
-3x+3x+6y-y=10
Me tango -3x+y=-10 mai i -3x+6y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-y=10
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=10
Tāpiri 6y ki te -y.
y=2
Whakawehea ngā taha e rua ki te 5.
-3x+2=-10
Whakaurua te 2 mō y ki -3x+y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x=-12
Me tango 2 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -3.
x=4,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}