Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2y=1
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
x-3y=-4
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-2y=1,x-3y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y+1
Me tāpiri 2y ki ngā taha e rua o te whārite.
2y+1-3y=-4
Whakakapia te 2y+1 mō te x ki tērā atu whārite, x-3y=-4.
-y+1=-4
Tāpiri 2y ki te -3y.
-y=-5
Me tango 1 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -1.
x=2\times 5+1
Whakaurua te 5 mō y ki x=2y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10+1
Whakareatia 2 ki te 5.
x=11
Tāpiri 1 ki te 10.
x=11,y=5
Kua oti te pūnaha te whakatau.
x-2y=1
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
x-3y=-4
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-2y=1,x-3y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\right)}&-\frac{-2}{-3-\left(-2\right)}\\-\frac{1}{-3-\left(-2\right)}&\frac{1}{-3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-2\left(-4\right)\\1-\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=11,y=5
Tangohia ngā huānga poukapa x me y.
x-2y=1
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
x-3y=-4
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-2y=1,x-3y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-2y+3y=1+4
Me tango x-3y=-4 mai i x-2y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+3y=1+4
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=1+4
Tāpiri -2y ki te 3y.
y=5
Tāpiri 1 ki te 4.
x-3\times 5=-4
Whakaurua te 5 mō y ki x-3y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-15=-4
Whakareatia -3 ki te 5.
x=11
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=11,y=5
Kua oti te pūnaha te whakatau.