Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+\frac{1}{4}y=5
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{1}{4}y ki ngā taha e rua.
x+\frac{1}{4}y=5,3x+2y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+\frac{1}{4}y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-\frac{1}{4}y+5
Me tango \frac{y}{4} mai i ngā taha e rua o te whārite.
3\left(-\frac{1}{4}y+5\right)+2y=0
Whakakapia te -\frac{y}{4}+5 mō te x ki tērā atu whārite, 3x+2y=0.
-\frac{3}{4}y+15+2y=0
Whakareatia 3 ki te -\frac{y}{4}+5.
\frac{5}{4}y+15=0
Tāpiri -\frac{3y}{4} ki te 2y.
\frac{5}{4}y=-15
Me tango 15 mai i ngā taha e rua o te whārite.
y=-12
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\left(-12\right)+5
Whakaurua te -12 mō y ki x=-\frac{1}{4}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3+5
Whakareatia -\frac{1}{4} ki te -12.
x=8
Tāpiri 5 ki te 3.
x=8,y=-12
Kua oti te pūnaha te whakatau.
x+\frac{1}{4}y=5
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{1}{4}y ki ngā taha e rua.
x+\frac{1}{4}y=5,3x+2y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\frac{1}{4}\times 3}&-\frac{\frac{1}{4}}{2-\frac{1}{4}\times 3}\\-\frac{3}{2-\frac{1}{4}\times 3}&\frac{1}{2-\frac{1}{4}\times 3}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}&-\frac{1}{5}\\-\frac{12}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\times 5\\-\frac{12}{5}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=-12
Tangohia ngā huānga poukapa x me y.
x+\frac{1}{4}y=5
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{1}{4}y ki ngā taha e rua.
x+\frac{1}{4}y=5,3x+2y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times \frac{1}{4}y=3\times 5,3x+2y=0
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+\frac{3}{4}y=15,3x+2y=0
Whakarūnātia.
3x-3x+\frac{3}{4}y-2y=15
Me tango 3x+2y=0 mai i 3x+\frac{3}{4}y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{4}y-2y=15
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{5}{4}y=15
Tāpiri \frac{3y}{4} ki te -2y.
y=-12
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
3x+2\left(-12\right)=0
Whakaurua te -12 mō y ki 3x+2y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-24=0
Whakareatia 2 ki te -12.
3x=24
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=8
Whakawehea ngā taha e rua ki te 3.
x=8,y=-12
Kua oti te pūnaha te whakatau.