\left\{ \begin{array} { l } { x + y - 1 = 0 } \\ { x - z = 0 } \\ { x - y + z = 1 } \end{array} \right.
Whakaoti mō x, y, z
x=\frac{2}{3}\approx 0.666666667
y=\frac{1}{3}\approx 0.333333333
z=\frac{2}{3}\approx 0.666666667
Tohaina
Kua tāruatia ki te papatopenga
x=-y+1
Me whakaoti te x+y-1=0 mō x.
-y+1-z=0 -y+1-y+z=1
Whakakapia te -y+1 mō te x i te whārite tuarua me te tuatoru.
y=1-z z=2y
Me whakaoti ēnei whārite mō y me z takitahi.
z=2\left(1-z\right)
Whakakapia te 1-z mō te y i te whārite z=2y.
z=\frac{2}{3}
Me whakaoti te z=2\left(1-z\right) mō z.
y=1-\frac{2}{3}
Whakakapia te \frac{2}{3} mō te z i te whārite y=1-z.
y=\frac{1}{3}
Tātaitia te y i te y=1-\frac{2}{3}.
x=-\frac{1}{3}+1
Whakakapia te \frac{1}{3} mō te y i te whārite x=-y+1.
x=\frac{2}{3}
Tātaitia te x i te x=-\frac{1}{3}+1.
x=\frac{2}{3} y=\frac{1}{3} z=\frac{2}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}