Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=a,x-y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=a
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+a
Me tango y mai i ngā taha e rua o te whārite.
-y+a-y=3
Whakakapia te -y+a mō te x ki tērā atu whārite, x-y=3.
-2y+a=3
Tāpiri -y ki te -y.
-2y=3-a
Me tango a mai i ngā taha e rua o te whārite.
y=\frac{a-3}{2}
Whakawehea ngā taha e rua ki te -2.
x=-\frac{a-3}{2}+a
Whakaurua te \frac{-3+a}{2} mō y ki x=-y+a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3-a}{2}+a
Whakareatia -1 ki te \frac{-3+a}{2}.
x=\frac{a+3}{2}
Tāpiri a ki te \frac{3-a}{2}.
x=\frac{a+3}{2},y=\frac{a-3}{2}
Kua oti te pūnaha te whakatau.
x+y=a,x-y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}a\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}a\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}a\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}a\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}a\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}a+\frac{1}{2}\times 3\\\frac{1}{2}a-\frac{1}{2}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a+3}{2}\\\frac{a-3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{a+3}{2},y=\frac{a-3}{2}
Tangohia ngā huānga poukapa x me y.
x+y=a,x-y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+y=a-3
Me tango x-y=3 mai i x+y=a mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+y=a-3
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=a-3
Tāpiri y ki te y.
y=\frac{a-3}{2}
Whakawehea ngā taha e rua ki te 2.
x-\frac{a-3}{2}=3
Whakaurua te \frac{a-3}{2} mō y ki x-y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{3-a}{2}=3
Whakareatia -1 ki te \frac{a-3}{2}.
x=\frac{a+3}{2}
Me tango \frac{3-a}{2} mai i ngā taha e rua o te whārite.
x=\frac{a+3}{2},y=\frac{a-3}{2}
Kua oti te pūnaha te whakatau.