\left\{ \begin{array} { l } { x + y = 90 } \\ { 3 x - 3 y = 90 } \end{array} \right.
Whakaoti mō x, y
x=60
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=90,3x-3y=90
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=90
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+90
Me tango y mai i ngā taha e rua o te whārite.
3\left(-y+90\right)-3y=90
Whakakapia te -y+90 mō te x ki tērā atu whārite, 3x-3y=90.
-3y+270-3y=90
Whakareatia 3 ki te -y+90.
-6y+270=90
Tāpiri -3y ki te -3y.
-6y=-180
Me tango 270 mai i ngā taha e rua o te whārite.
y=30
Whakawehea ngā taha e rua ki te -6.
x=-30+90
Whakaurua te 30 mō y ki x=-y+90. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=60
Tāpiri 90 ki te -30.
x=60,y=30
Kua oti te pūnaha te whakatau.
x+y=90,3x-3y=90
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\90\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}1&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}90\\90\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\3&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}90\\90\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}90\\90\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-3}&-\frac{1}{-3-3}\\-\frac{3}{-3-3}&\frac{1}{-3-3}\end{matrix}\right)\left(\begin{matrix}90\\90\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{6}\\\frac{1}{2}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}90\\90\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 90+\frac{1}{6}\times 90\\\frac{1}{2}\times 90-\frac{1}{6}\times 90\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=60,y=30
Tangohia ngā huānga poukapa x me y.
x+y=90,3x-3y=90
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3y=3\times 90,3x-3y=90
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+3y=270,3x-3y=90
Whakarūnātia.
3x-3x+3y+3y=270-90
Me tango 3x-3y=90 mai i 3x+3y=270 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+3y=270-90
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=270-90
Tāpiri 3y ki te 3y.
6y=180
Tāpiri 270 ki te -90.
y=30
Whakawehea ngā taha e rua ki te 6.
3x-3\times 30=90
Whakaurua te 30 mō y ki 3x-3y=90. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-90=90
Whakareatia -3 ki te 30.
3x=180
Me tāpiri 90 ki ngā taha e rua o te whārite.
x=60
Whakawehea ngā taha e rua ki te 3.
x=60,y=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}