\left\{ \begin{array} { l } { x + y = 50 } \\ { 25 x + 7 y = 300 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{25}{9} = -2\frac{7}{9} \approx -2.777777778
y = \frac{475}{9} = 52\frac{7}{9} \approx 52.777777778
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=50,25x+7y=300
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+50
Me tango y mai i ngā taha e rua o te whārite.
25\left(-y+50\right)+7y=300
Whakakapia te -y+50 mō te x ki tērā atu whārite, 25x+7y=300.
-25y+1250+7y=300
Whakareatia 25 ki te -y+50.
-18y+1250=300
Tāpiri -25y ki te 7y.
-18y=-950
Me tango 1250 mai i ngā taha e rua o te whārite.
y=\frac{475}{9}
Whakawehea ngā taha e rua ki te -18.
x=-\frac{475}{9}+50
Whakaurua te \frac{475}{9} mō y ki x=-y+50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{25}{9}
Tāpiri 50 ki te -\frac{475}{9}.
x=-\frac{25}{9},y=\frac{475}{9}
Kua oti te pūnaha te whakatau.
x+y=50,25x+7y=300
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\25&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\300\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}1&1\\25&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\25&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-25}&-\frac{1}{7-25}\\-\frac{25}{7-25}&\frac{1}{7-25}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{18}&\frac{1}{18}\\\frac{25}{18}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{18}\times 50+\frac{1}{18}\times 300\\\frac{25}{18}\times 50-\frac{1}{18}\times 300\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{25}{9}\\\frac{475}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{25}{9},y=\frac{475}{9}
Tangohia ngā huānga poukapa x me y.
x+y=50,25x+7y=300
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
25x+25y=25\times 50,25x+7y=300
Kia ōrite ai a x me 25x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 25 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
25x+25y=1250,25x+7y=300
Whakarūnātia.
25x-25x+25y-7y=1250-300
Me tango 25x+7y=300 mai i 25x+25y=1250 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-7y=1250-300
Tāpiri 25x ki te -25x. Ka whakakore atu ngā kupu 25x me -25x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=1250-300
Tāpiri 25y ki te -7y.
18y=950
Tāpiri 1250 ki te -300.
y=\frac{475}{9}
Whakawehea ngā taha e rua ki te 18.
25x+7\times \frac{475}{9}=300
Whakaurua te \frac{475}{9} mō y ki 25x+7y=300. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
25x+\frac{3325}{9}=300
Whakareatia 7 ki te \frac{475}{9}.
25x=-\frac{625}{9}
Me tango \frac{3325}{9} mai i ngā taha e rua o te whārite.
x=-\frac{25}{9}
Whakawehea ngā taha e rua ki te 25.
x=-\frac{25}{9},y=\frac{475}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}