\left\{ \begin{array} { l } { x + y = 45 } \\ { 18 x + 120 y = 6000 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{100}{17} = -5\frac{15}{17} \approx -5.882352941
y = \frac{865}{17} = 50\frac{15}{17} \approx 50.882352941
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=45,18x+120y=6000
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+45
Me tango y mai i ngā taha e rua o te whārite.
18\left(-y+45\right)+120y=6000
Whakakapia te -y+45 mō te x ki tērā atu whārite, 18x+120y=6000.
-18y+810+120y=6000
Whakareatia 18 ki te -y+45.
102y+810=6000
Tāpiri -18y ki te 120y.
102y=5190
Me tango 810 mai i ngā taha e rua o te whārite.
y=\frac{865}{17}
Whakawehea ngā taha e rua ki te 102.
x=-\frac{865}{17}+45
Whakaurua te \frac{865}{17} mō y ki x=-y+45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{100}{17}
Tāpiri 45 ki te -\frac{865}{17}.
x=-\frac{100}{17},y=\frac{865}{17}
Kua oti te pūnaha te whakatau.
x+y=45,18x+120y=6000
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\18&120\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\6000\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}1&1\\18&120\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\18&120\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{120}{120-18}&-\frac{1}{120-18}\\-\frac{18}{120-18}&\frac{1}{120-18}\end{matrix}\right)\left(\begin{matrix}45\\6000\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{17}&-\frac{1}{102}\\-\frac{3}{17}&\frac{1}{102}\end{matrix}\right)\left(\begin{matrix}45\\6000\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{17}\times 45-\frac{1}{102}\times 6000\\-\frac{3}{17}\times 45+\frac{1}{102}\times 6000\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{100}{17}\\\frac{865}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{100}{17},y=\frac{865}{17}
Tangohia ngā huānga poukapa x me y.
x+y=45,18x+120y=6000
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
18x+18y=18\times 45,18x+120y=6000
Kia ōrite ai a x me 18x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 18 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
18x+18y=810,18x+120y=6000
Whakarūnātia.
18x-18x+18y-120y=810-6000
Me tango 18x+120y=6000 mai i 18x+18y=810 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-120y=810-6000
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-102y=810-6000
Tāpiri 18y ki te -120y.
-102y=-5190
Tāpiri 810 ki te -6000.
y=\frac{865}{17}
Whakawehea ngā taha e rua ki te -102.
18x+120\times \frac{865}{17}=6000
Whakaurua te \frac{865}{17} mō y ki 18x+120y=6000. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
18x+\frac{103800}{17}=6000
Whakareatia 120 ki te \frac{865}{17}.
18x=-\frac{1800}{17}
Me tango \frac{103800}{17} mai i ngā taha e rua o te whārite.
x=-\frac{100}{17}
Whakawehea ngā taha e rua ki te 18.
x=-\frac{100}{17},y=\frac{865}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}