\left\{ \begin{array} { l } { x + y = 40 } \\ { y + 2 = 2 x } \end{array} \right.
Whakaoti mō x, y
x=14
y=26
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+2-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x+y=40,-2x+y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+40
Me tango y mai i ngā taha e rua o te whārite.
-2\left(-y+40\right)+y=-2
Whakakapia te -y+40 mō te x ki tērā atu whārite, -2x+y=-2.
2y-80+y=-2
Whakareatia -2 ki te -y+40.
3y-80=-2
Tāpiri 2y ki te y.
3y=78
Me tāpiri 80 ki ngā taha e rua o te whārite.
y=26
Whakawehea ngā taha e rua ki te 3.
x=-26+40
Whakaurua te 26 mō y ki x=-y+40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=14
Tāpiri 40 ki te -26.
x=14,y=26
Kua oti te pūnaha te whakatau.
y+2-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x+y=40,-2x+y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}40\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}40\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}40\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{1}{1-\left(-2\right)}\\-\frac{-2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}40\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}40\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 40-\frac{1}{3}\left(-2\right)\\\frac{2}{3}\times 40+\frac{1}{3}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\26\end{matrix}\right)
Mahia ngā tātaitanga.
x=14,y=26
Tangohia ngā huānga poukapa x me y.
y+2-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x+y=40,-2x+y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+2x+y-y=40+2
Me tango -2x+y=-2 mai i x+y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+2x=40+2
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=40+2
Tāpiri x ki te 2x.
3x=42
Tāpiri 40 ki te 2.
x=14
Whakawehea ngā taha e rua ki te 3.
-2\times 14+y=-2
Whakaurua te 14 mō x ki -2x+y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-28+y=-2
Whakareatia -2 ki te 14.
y=26
Me tāpiri 28 ki ngā taha e rua o te whārite.
x=14,y=26
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}