\left\{ \begin{array} { l } { x + y = 40 } \\ { x = \frac { 1 } { 7 } y } \end{array} \right.
Whakaoti mō x, y
x=5
y=35
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{1}{7}y=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{7}y mai i ngā taha e rua.
x+y=40,x-\frac{1}{7}y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+40
Me tango y mai i ngā taha e rua o te whārite.
-y+40-\frac{1}{7}y=0
Whakakapia te -y+40 mō te x ki tērā atu whārite, x-\frac{1}{7}y=0.
-\frac{8}{7}y+40=0
Tāpiri -y ki te -\frac{y}{7}.
-\frac{8}{7}y=-40
Me tango 40 mai i ngā taha e rua o te whārite.
y=35
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-35+40
Whakaurua te 35 mō y ki x=-y+40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5
Tāpiri 40 ki te -35.
x=5,y=35
Kua oti te pūnaha te whakatau.
x-\frac{1}{7}y=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{7}y mai i ngā taha e rua.
x+y=40,x-\frac{1}{7}y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{7}}{-\frac{1}{7}-1}&-\frac{1}{-\frac{1}{7}-1}\\-\frac{1}{-\frac{1}{7}-1}&\frac{1}{-\frac{1}{7}-1}\end{matrix}\right)\left(\begin{matrix}40\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{7}{8}\\\frac{7}{8}&-\frac{7}{8}\end{matrix}\right)\left(\begin{matrix}40\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 40\\\frac{7}{8}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\35\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=35
Tangohia ngā huānga poukapa x me y.
x-\frac{1}{7}y=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{7}y mai i ngā taha e rua.
x+y=40,x-\frac{1}{7}y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+\frac{1}{7}y=40
Me tango x-\frac{1}{7}y=0 mai i x+y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+\frac{1}{7}y=40
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{8}{7}y=40
Tāpiri y ki te \frac{y}{7}.
y=35
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x-\frac{1}{7}\times 35=0
Whakaurua te 35 mō y ki x-\frac{1}{7}y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-5=0
Whakareatia -\frac{1}{7} ki te 35.
x=5
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=5,y=35
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}