Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-\frac{1}{7}y=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{7}y mai i ngā taha e rua.
x+y=40,x-\frac{1}{7}y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+40
Me tango y mai i ngā taha e rua o te whārite.
-y+40-\frac{1}{7}y=0
Whakakapia te -y+40 mō te x ki tērā atu whārite, x-\frac{1}{7}y=0.
-\frac{8}{7}y+40=0
Tāpiri -y ki te -\frac{y}{7}.
-\frac{8}{7}y=-40
Me tango 40 mai i ngā taha e rua o te whārite.
y=35
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-35+40
Whakaurua te 35 mō y ki x=-y+40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5
Tāpiri 40 ki te -35.
x=5,y=35
Kua oti te pūnaha te whakatau.
x-\frac{1}{7}y=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{7}y mai i ngā taha e rua.
x+y=40,x-\frac{1}{7}y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{7}\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{7}}{-\frac{1}{7}-1}&-\frac{1}{-\frac{1}{7}-1}\\-\frac{1}{-\frac{1}{7}-1}&\frac{1}{-\frac{1}{7}-1}\end{matrix}\right)\left(\begin{matrix}40\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{7}{8}\\\frac{7}{8}&-\frac{7}{8}\end{matrix}\right)\left(\begin{matrix}40\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 40\\\frac{7}{8}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\35\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=35
Tangohia ngā huānga poukapa x me y.
x-\frac{1}{7}y=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{7}y mai i ngā taha e rua.
x+y=40,x-\frac{1}{7}y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+\frac{1}{7}y=40
Me tango x-\frac{1}{7}y=0 mai i x+y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+\frac{1}{7}y=40
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{8}{7}y=40
Tāpiri y ki te \frac{y}{7}.
y=35
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x-\frac{1}{7}\times 35=0
Whakaurua te 35 mō y ki x-\frac{1}{7}y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-5=0
Whakareatia -\frac{1}{7} ki te 35.
x=5
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=5,y=35
Kua oti te pūnaha te whakatau.