\left\{ \begin{array} { l } { x + y = 36 } \\ { \frac { 5 } { 7 } = \frac { x } { y } } \end{array} \right.
Whakaoti mō x, y
x=15
y=21
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y=7x
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7y, arā, te tauraro pātahi he tino iti rawa te kitea o 7,y.
5y-7x=0
Tangohia te 7x mai i ngā taha e rua.
x+y=36,-7x+5y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=36
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+36
Me tango y mai i ngā taha e rua o te whārite.
-7\left(-y+36\right)+5y=0
Whakakapia te -y+36 mō te x ki tērā atu whārite, -7x+5y=0.
7y-252+5y=0
Whakareatia -7 ki te -y+36.
12y-252=0
Tāpiri 7y ki te 5y.
12y=252
Me tāpiri 252 ki ngā taha e rua o te whārite.
y=21
Whakawehea ngā taha e rua ki te 12.
x=-21+36
Whakaurua te 21 mō y ki x=-y+36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=15
Tāpiri 36 ki te -21.
x=15,y=21
Kua oti te pūnaha te whakatau.
5y=7x
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7y, arā, te tauraro pātahi he tino iti rawa te kitea o 7,y.
5y-7x=0
Tangohia te 7x mai i ngā taha e rua.
x+y=36,-7x+5y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}1&1\\-7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}36\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-7&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}36\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-7&5\end{matrix}\right))\left(\begin{matrix}36\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-7\right)}&-\frac{1}{5-\left(-7\right)}\\-\frac{-7}{5-\left(-7\right)}&\frac{1}{5-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}36\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&-\frac{1}{12}\\\frac{7}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}36\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\times 36\\\frac{7}{12}\times 36\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\21\end{matrix}\right)
Mahia ngā tātaitanga.
x=15,y=21
Tangohia ngā huānga poukapa x me y.
5y=7x
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7y, arā, te tauraro pātahi he tino iti rawa te kitea o 7,y.
5y-7x=0
Tangohia te 7x mai i ngā taha e rua.
x+y=36,-7x+5y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7x-7y=-7\times 36,-7x+5y=0
Kia ōrite ai a x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-7x-7y=-252,-7x+5y=0
Whakarūnātia.
-7x+7x-7y-5y=-252
Me tango -7x+5y=0 mai i -7x-7y=-252 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-7y-5y=-252
Tāpiri -7x ki te 7x. Ka whakakore atu ngā kupu -7x me 7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=-252
Tāpiri -7y ki te -5y.
y=21
Whakawehea ngā taha e rua ki te -12.
-7x+5\times 21=0
Whakaurua te 21 mō y ki -7x+5y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x+105=0
Whakareatia 5 ki te 21.
-7x=-105
Me tango 105 mai i ngā taha e rua o te whārite.
x=15
Whakawehea ngā taha e rua ki te -7.
x=15,y=21
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}