\left\{ \begin{array} { l } { x + y = 30 } \\ { 20 x + 25 y = 640 } \end{array} \right.
Whakaoti mō x, y
x=22
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=30,20x+25y=640
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+30
Me tango y mai i ngā taha e rua o te whārite.
20\left(-y+30\right)+25y=640
Whakakapia te -y+30 mō te x ki tērā atu whārite, 20x+25y=640.
-20y+600+25y=640
Whakareatia 20 ki te -y+30.
5y+600=640
Tāpiri -20y ki te 25y.
5y=40
Me tango 600 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te 5.
x=-8+30
Whakaurua te 8 mō y ki x=-y+30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=22
Tāpiri 30 ki te -8.
x=22,y=8
Kua oti te pūnaha te whakatau.
x+y=30,20x+25y=640
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\640\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\640\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\20&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\640\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\640\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-20}&-\frac{1}{25-20}\\-\frac{20}{25-20}&\frac{1}{25-20}\end{matrix}\right)\left(\begin{matrix}30\\640\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-\frac{1}{5}\\-4&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}30\\640\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 30-\frac{1}{5}\times 640\\-4\times 30+\frac{1}{5}\times 640\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=22,y=8
Tangohia ngā huānga poukapa x me y.
x+y=30,20x+25y=640
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
20x+20y=20\times 30,20x+25y=640
Kia ōrite ai a x me 20x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 20 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
20x+20y=600,20x+25y=640
Whakarūnātia.
20x-20x+20y-25y=600-640
Me tango 20x+25y=640 mai i 20x+20y=600 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-25y=600-640
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=600-640
Tāpiri 20y ki te -25y.
-5y=-40
Tāpiri 600 ki te -640.
y=8
Whakawehea ngā taha e rua ki te -5.
20x+25\times 8=640
Whakaurua te 8 mō y ki 20x+25y=640. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
20x+200=640
Whakareatia 25 ki te 8.
20x=440
Me tango 200 mai i ngā taha e rua o te whārite.
x=22
Whakawehea ngā taha e rua ki te 20.
x=22,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}