\left\{ \begin{array} { l } { x + y = 30 } \\ { 2 x + 25 y = 698 } \end{array} \right.
Whakaoti mō x, y
x = \frac{52}{23} = 2\frac{6}{23} \approx 2.260869565
y = \frac{638}{23} = 27\frac{17}{23} \approx 27.739130435
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=30,2x+25y=698
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+30
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+30\right)+25y=698
Whakakapia te -y+30 mō te x ki tērā atu whārite, 2x+25y=698.
-2y+60+25y=698
Whakareatia 2 ki te -y+30.
23y+60=698
Tāpiri -2y ki te 25y.
23y=638
Me tango 60 mai i ngā taha e rua o te whārite.
y=\frac{638}{23}
Whakawehea ngā taha e rua ki te 23.
x=-\frac{638}{23}+30
Whakaurua te \frac{638}{23} mō y ki x=-y+30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{52}{23}
Tāpiri 30 ki te -\frac{638}{23}.
x=\frac{52}{23},y=\frac{638}{23}
Kua oti te pūnaha te whakatau.
x+y=30,2x+25y=698
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\698\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-2}&-\frac{1}{25-2}\\-\frac{2}{25-2}&\frac{1}{25-2}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}&-\frac{1}{23}\\-\frac{2}{23}&\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}\times 30-\frac{1}{23}\times 698\\-\frac{2}{23}\times 30+\frac{1}{23}\times 698\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{52}{23}\\\frac{638}{23}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{52}{23},y=\frac{638}{23}
Tangohia ngā huānga poukapa x me y.
x+y=30,2x+25y=698
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=2\times 30,2x+25y=698
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+2y=60,2x+25y=698
Whakarūnātia.
2x-2x+2y-25y=60-698
Me tango 2x+25y=698 mai i 2x+2y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-25y=60-698
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=60-698
Tāpiri 2y ki te -25y.
-23y=-638
Tāpiri 60 ki te -698.
y=\frac{638}{23}
Whakawehea ngā taha e rua ki te -23.
2x+25\times \frac{638}{23}=698
Whakaurua te \frac{638}{23} mō y ki 2x+25y=698. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{15950}{23}=698
Whakareatia 25 ki te \frac{638}{23}.
2x=\frac{104}{23}
Me tango \frac{15950}{23} mai i ngā taha e rua o te whārite.
x=\frac{52}{23}
Whakawehea ngā taha e rua ki te 2.
x=\frac{52}{23},y=\frac{638}{23}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}