\left\{ \begin{array} { l } { x + y = 220 } \\ { \frac { 3 } { 5 } x = 38 y - 5 } \end{array} \right.
Whakaoti mō x, y
x = \frac{41775}{193} = 216\frac{87}{193} \approx 216.450777202
y = \frac{685}{193} = 3\frac{106}{193} \approx 3.549222798
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}x-38y=-5
Whakaarohia te whārite tuarua. Tangohia te 38y mai i ngā taha e rua.
x+y=220,\frac{3}{5}x-38y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=220
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+220
Me tango y mai i ngā taha e rua o te whārite.
\frac{3}{5}\left(-y+220\right)-38y=-5
Whakakapia te -y+220 mō te x ki tērā atu whārite, \frac{3}{5}x-38y=-5.
-\frac{3}{5}y+132-38y=-5
Whakareatia \frac{3}{5} ki te -y+220.
-\frac{193}{5}y+132=-5
Tāpiri -\frac{3y}{5} ki te -38y.
-\frac{193}{5}y=-137
Me tango 132 mai i ngā taha e rua o te whārite.
y=\frac{685}{193}
Whakawehea ngā taha e rua o te whārite ki te -\frac{193}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{685}{193}+220
Whakaurua te \frac{685}{193} mō y ki x=-y+220. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{41775}{193}
Tāpiri 220 ki te -\frac{685}{193}.
x=\frac{41775}{193},y=\frac{685}{193}
Kua oti te pūnaha te whakatau.
\frac{3}{5}x-38y=-5
Whakaarohia te whārite tuarua. Tangohia te 38y mai i ngā taha e rua.
x+y=220,\frac{3}{5}x-38y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}220\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{3}{5}&-38\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{38}{-38-\frac{3}{5}}&-\frac{1}{-38-\frac{3}{5}}\\-\frac{\frac{3}{5}}{-38-\frac{3}{5}}&\frac{1}{-38-\frac{3}{5}}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{190}{193}&\frac{5}{193}\\\frac{3}{193}&-\frac{5}{193}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{190}{193}\times 220+\frac{5}{193}\left(-5\right)\\\frac{3}{193}\times 220-\frac{5}{193}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{41775}{193}\\\frac{685}{193}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{41775}{193},y=\frac{685}{193}
Tangohia ngā huānga poukapa x me y.
\frac{3}{5}x-38y=-5
Whakaarohia te whārite tuarua. Tangohia te 38y mai i ngā taha e rua.
x+y=220,\frac{3}{5}x-38y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{3}{5}x+\frac{3}{5}y=\frac{3}{5}\times 220,\frac{3}{5}x-38y=-5
Kia ōrite ai a x me \frac{3x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{3}{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
\frac{3}{5}x+\frac{3}{5}y=132,\frac{3}{5}x-38y=-5
Whakarūnātia.
\frac{3}{5}x-\frac{3}{5}x+\frac{3}{5}y+38y=132+5
Me tango \frac{3}{5}x-38y=-5 mai i \frac{3}{5}x+\frac{3}{5}y=132 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{5}y+38y=132+5
Tāpiri \frac{3x}{5} ki te -\frac{3x}{5}. Ka whakakore atu ngā kupu \frac{3x}{5} me -\frac{3x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{193}{5}y=132+5
Tāpiri \frac{3y}{5} ki te 38y.
\frac{193}{5}y=137
Tāpiri 132 ki te 5.
y=\frac{685}{193}
Whakawehea ngā taha e rua o te whārite ki te \frac{193}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{3}{5}x-38\times \frac{685}{193}=-5
Whakaurua te \frac{685}{193} mō y ki \frac{3}{5}x-38y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{3}{5}x-\frac{26030}{193}=-5
Whakareatia -38 ki te \frac{685}{193}.
\frac{3}{5}x=\frac{25065}{193}
Me tāpiri \frac{26030}{193} ki ngā taha e rua o te whārite.
x=\frac{41775}{193}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{41775}{193},y=\frac{685}{193}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}