\left\{ \begin{array} { l } { x + y = 220 } \\ { \frac { 2 } { 5 } x = \frac { 3 } { 8 } y - 5 } \end{array} \right.
Whakaoti mō x, y
x=100
y=120
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{5}x-\frac{3}{8}y=-5
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{8}y mai i ngā taha e rua.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=220
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+220
Me tango y mai i ngā taha e rua o te whārite.
\frac{2}{5}\left(-y+220\right)-\frac{3}{8}y=-5
Whakakapia te -y+220 mō te x ki tērā atu whārite, \frac{2}{5}x-\frac{3}{8}y=-5.
-\frac{2}{5}y+88-\frac{3}{8}y=-5
Whakareatia \frac{2}{5} ki te -y+220.
-\frac{31}{40}y+88=-5
Tāpiri -\frac{2y}{5} ki te -\frac{3y}{8}.
-\frac{31}{40}y=-93
Me tango 88 mai i ngā taha e rua o te whārite.
y=120
Whakawehea ngā taha e rua o te whārite ki te -\frac{31}{40}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-120+220
Whakaurua te 120 mō y ki x=-y+220. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=100
Tāpiri 220 ki te -120.
x=100,y=120
Kua oti te pūnaha te whakatau.
\frac{2}{5}x-\frac{3}{8}y=-5
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{8}y mai i ngā taha e rua.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}220\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{8}}{-\frac{3}{8}-\frac{2}{5}}&-\frac{1}{-\frac{3}{8}-\frac{2}{5}}\\-\frac{\frac{2}{5}}{-\frac{3}{8}-\frac{2}{5}}&\frac{1}{-\frac{3}{8}-\frac{2}{5}}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{31}&\frac{40}{31}\\\frac{16}{31}&-\frac{40}{31}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{31}\times 220+\frac{40}{31}\left(-5\right)\\\frac{16}{31}\times 220-\frac{40}{31}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\120\end{matrix}\right)
Mahia ngā tātaitanga.
x=100,y=120
Tangohia ngā huānga poukapa x me y.
\frac{2}{5}x-\frac{3}{8}y=-5
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{8}y mai i ngā taha e rua.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{2}{5}x+\frac{2}{5}y=\frac{2}{5}\times 220,\frac{2}{5}x-\frac{3}{8}y=-5
Kia ōrite ai a x me \frac{2x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{2}{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
\frac{2}{5}x+\frac{2}{5}y=88,\frac{2}{5}x-\frac{3}{8}y=-5
Whakarūnātia.
\frac{2}{5}x-\frac{2}{5}x+\frac{2}{5}y+\frac{3}{8}y=88+5
Me tango \frac{2}{5}x-\frac{3}{8}y=-5 mai i \frac{2}{5}x+\frac{2}{5}y=88 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{2}{5}y+\frac{3}{8}y=88+5
Tāpiri \frac{2x}{5} ki te -\frac{2x}{5}. Ka whakakore atu ngā kupu \frac{2x}{5} me -\frac{2x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{31}{40}y=88+5
Tāpiri \frac{2y}{5} ki te \frac{3y}{8}.
\frac{31}{40}y=93
Tāpiri 88 ki te 5.
y=120
Whakawehea ngā taha e rua o te whārite ki te \frac{31}{40}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{2}{5}x-\frac{3}{8}\times 120=-5
Whakaurua te 120 mō y ki \frac{2}{5}x-\frac{3}{8}y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{2}{5}x-45=-5
Whakareatia -\frac{3}{8} ki te 120.
\frac{2}{5}x=40
Me tāpiri 45 ki ngā taha e rua o te whārite.
x=100
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=100,y=120
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}