\left\{ \begin{array} { l } { x + y = 204 } \\ { \frac { 2 } { 3 } y = \frac { 3 } { 4 } x } \end{array} \right.
Whakaoti mō x, y
x=96
y=108
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}y-\frac{3}{4}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{4}x mai i ngā taha e rua.
x+y=204,-\frac{3}{4}x+\frac{2}{3}y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=204
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+204
Me tango y mai i ngā taha e rua o te whārite.
-\frac{3}{4}\left(-y+204\right)+\frac{2}{3}y=0
Whakakapia te -y+204 mō te x ki tērā atu whārite, -\frac{3}{4}x+\frac{2}{3}y=0.
\frac{3}{4}y-153+\frac{2}{3}y=0
Whakareatia -\frac{3}{4} ki te -y+204.
\frac{17}{12}y-153=0
Tāpiri \frac{3y}{4} ki te \frac{2y}{3}.
\frac{17}{12}y=153
Me tāpiri 153 ki ngā taha e rua o te whārite.
y=108
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{12}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-108+204
Whakaurua te 108 mō y ki x=-y+204. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=96
Tāpiri 204 ki te -108.
x=96,y=108
Kua oti te pūnaha te whakatau.
\frac{2}{3}y-\frac{3}{4}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{4}x mai i ngā taha e rua.
x+y=204,-\frac{3}{4}x+\frac{2}{3}y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}204\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}204\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}204\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}204\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-\frac{3}{4}\right)}&-\frac{1}{\frac{2}{3}-\left(-\frac{3}{4}\right)}\\-\frac{-\frac{3}{4}}{\frac{2}{3}-\left(-\frac{3}{4}\right)}&\frac{1}{\frac{2}{3}-\left(-\frac{3}{4}\right)}\end{matrix}\right)\left(\begin{matrix}204\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{17}&-\frac{12}{17}\\\frac{9}{17}&\frac{12}{17}\end{matrix}\right)\left(\begin{matrix}204\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{17}\times 204\\\frac{9}{17}\times 204\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}96\\108\end{matrix}\right)
Mahia ngā tātaitanga.
x=96,y=108
Tangohia ngā huānga poukapa x me y.
\frac{2}{3}y-\frac{3}{4}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{4}x mai i ngā taha e rua.
x+y=204,-\frac{3}{4}x+\frac{2}{3}y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-\frac{3}{4}x-\frac{3}{4}y=-\frac{3}{4}\times 204,-\frac{3}{4}x+\frac{2}{3}y=0
Kia ōrite ai a x me -\frac{3x}{4}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -\frac{3}{4} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-\frac{3}{4}x-\frac{3}{4}y=-153,-\frac{3}{4}x+\frac{2}{3}y=0
Whakarūnātia.
-\frac{3}{4}x+\frac{3}{4}x-\frac{3}{4}y-\frac{2}{3}y=-153
Me tango -\frac{3}{4}x+\frac{2}{3}y=0 mai i -\frac{3}{4}x-\frac{3}{4}y=-153 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{3}{4}y-\frac{2}{3}y=-153
Tāpiri -\frac{3x}{4} ki te \frac{3x}{4}. Ka whakakore atu ngā kupu -\frac{3x}{4} me \frac{3x}{4}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{17}{12}y=-153
Tāpiri -\frac{3y}{4} ki te -\frac{2y}{3}.
y=108
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{12}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-\frac{3}{4}x+\frac{2}{3}\times 108=0
Whakaurua te 108 mō y ki -\frac{3}{4}x+\frac{2}{3}y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-\frac{3}{4}x+72=0
Whakareatia \frac{2}{3} ki te 108.
-\frac{3}{4}x=-72
Me tango 72 mai i ngā taha e rua o te whārite.
x=96
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=96,y=108
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}