Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=17,2x-y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+17
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+17\right)-y=11
Whakakapia te -y+17 mō te x ki tērā atu whārite, 2x-y=11.
-2y+34-y=11
Whakareatia 2 ki te -y+17.
-3y+34=11
Tāpiri -2y ki te -y.
-3y=-23
Me tango 34 mai i ngā taha e rua o te whārite.
y=\frac{23}{3}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{23}{3}+17
Whakaurua te \frac{23}{3} mō y ki x=-y+17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{28}{3}
Tāpiri 17 ki te -\frac{23}{3}.
x=\frac{28}{3},y=\frac{23}{3}
Kua oti te pūnaha te whakatau.
x+y=17,2x-y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}17\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}17\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}17\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}17\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}17\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 17+\frac{1}{3}\times 11\\\frac{2}{3}\times 17-\frac{1}{3}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{3}\\\frac{23}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{28}{3},y=\frac{23}{3}
Tangohia ngā huānga poukapa x me y.
x+y=17,2x-y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=2\times 17,2x-y=11
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+2y=34,2x-y=11
Whakarūnātia.
2x-2x+2y+y=34-11
Me tango 2x-y=11 mai i 2x+2y=34 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+y=34-11
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=34-11
Tāpiri 2y ki te y.
3y=23
Tāpiri 34 ki te -11.
y=\frac{23}{3}
Whakawehea ngā taha e rua ki te 3.
2x-\frac{23}{3}=11
Whakaurua te \frac{23}{3} mō y ki 2x-y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=\frac{56}{3}
Me tāpiri \frac{23}{3} ki ngā taha e rua o te whārite.
x=\frac{28}{3}
Whakawehea ngā taha e rua ki te 2.
x=\frac{28}{3},y=\frac{23}{3}
Kua oti te pūnaha te whakatau.