Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=16
Whakaotia te x+y=16 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+16
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+16\right)^{2}=64
Whakakapia te -y+16 mō te x ki tērā atu whārite, y^{2}+x^{2}=64.
y^{2}+y^{2}-32y+256=64
Pūrua -y+16.
2y^{2}-32y+256=64
Tāpiri y^{2} ki te y^{2}.
2y^{2}-32y+192=0
Me tango 64 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 192}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 16\left(-1\right)\times 2 mō b, me 192 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 192}}{2\times 2}
Pūrua 1\times 16\left(-1\right)\times 2.
y=\frac{-\left(-32\right)±\sqrt{1024-8\times 192}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-32\right)±\sqrt{1024-1536}}{2\times 2}
Whakareatia -8 ki te 192.
y=\frac{-\left(-32\right)±\sqrt{-512}}{2\times 2}
Tāpiri 1024 ki te -1536.
y=\frac{-\left(-32\right)±16\sqrt{2}i}{2\times 2}
Tuhia te pūtakerua o te -512.
y=\frac{32±16\sqrt{2}i}{2\times 2}
Ko te tauaro o 1\times 16\left(-1\right)\times 2 ko 32.
y=\frac{32±16\sqrt{2}i}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{32+2^{\frac{9}{2}}i}{4}
Nā, me whakaoti te whārite y=\frac{32±16\sqrt{2}i}{4} ina he tāpiri te ±. Tāpiri 32 ki te 16i\sqrt{2}.
y=8+2^{\frac{5}{2}}i
Whakawehe 32+i\times 2^{\frac{9}{2}} ki te 4.
y=\frac{-2^{\frac{9}{2}}i+32}{4}
Nā, me whakaoti te whārite y=\frac{32±16\sqrt{2}i}{4} ina he tango te ±. Tango 16i\sqrt{2} mai i 32.
y=-2^{\frac{5}{2}}i+8
Whakawehe 32-i\times 2^{\frac{9}{2}} ki te 4.
x=-\left(8+2^{\frac{5}{2}}i\right)+16
E rua ngā otinga mō y: 8+i\times 2^{\frac{5}{2}} me 8-i\times 2^{\frac{5}{2}}. Me whakakapi 8+i\times 2^{\frac{5}{2}} mō y ki te whārite x=-y+16 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\left(-2^{\frac{5}{2}}i+8\right)+16
Me whakakapi te 8-i\times 2^{\frac{5}{2}} ināianei mō te y ki te whārite x=-y+16 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\left(8+2^{\frac{5}{2}}i\right)+16,y=8+2^{\frac{5}{2}}i\text{ or }x=-\left(-2^{\frac{5}{2}}i+8\right)+16,y=-2^{\frac{5}{2}}i+8
Kua oti te pūnaha te whakatau.