Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=7y
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
x-7y=0
Tangohia te 7y mai i ngā taha e rua.
x+y=140,x-7y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=140
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+140
Me tango y mai i ngā taha e rua o te whārite.
-y+140-7y=0
Whakakapia te -y+140 mō te x ki tērā atu whārite, x-7y=0.
-8y+140=0
Tāpiri -y ki te -7y.
-8y=-140
Me tango 140 mai i ngā taha e rua o te whārite.
y=\frac{35}{2}
Whakawehea ngā taha e rua ki te -8.
x=-\frac{35}{2}+140
Whakaurua te \frac{35}{2} mō y ki x=-y+140. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{245}{2}
Tāpiri 140 ki te -\frac{35}{2}.
x=\frac{245}{2},y=\frac{35}{2}
Kua oti te pūnaha te whakatau.
x=7y
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
x-7y=0
Tangohia te 7y mai i ngā taha e rua.
x+y=140,x-7y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}140\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}1&1\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-1}&-\frac{1}{-7-1}\\-\frac{1}{-7-1}&\frac{1}{-7-1}\end{matrix}\right)\left(\begin{matrix}140\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}&\frac{1}{8}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}140\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}\times 140\\\frac{1}{8}\times 140\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{245}{2}\\\frac{35}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{245}{2},y=\frac{35}{2}
Tangohia ngā huānga poukapa x me y.
x=7y
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
x-7y=0
Tangohia te 7y mai i ngā taha e rua.
x+y=140,x-7y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+7y=140
Me tango x-7y=0 mai i x+y=140 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+7y=140
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=140
Tāpiri y ki te 7y.
y=\frac{35}{2}
Whakawehea ngā taha e rua ki te 8.
x-7\times \frac{35}{2}=0
Whakaurua te \frac{35}{2} mō y ki x-7y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{245}{2}=0
Whakareatia -7 ki te \frac{35}{2}.
x=\frac{245}{2}
Me tāpiri \frac{245}{2} ki ngā taha e rua o te whārite.
x=\frac{245}{2},y=\frac{35}{2}
Kua oti te pūnaha te whakatau.