\left\{ \begin{array} { l } { x + y = 100 } \\ { 62.5 x + 48.7 x = 50 } \end{array} \right.
Whakaoti mō x, y
x=\frac{125}{278}\approx 0.449640288
y = \frac{27675}{278} = 99\frac{153}{278} \approx 99.550359712
Graph
Tohaina
Kua tāruatia ki te papatopenga
111.2x=50
Whakaarohia te whārite tuarua. Pahekotia te 62.5x me 48.7x, ka 111.2x.
x=\frac{50}{111.2}
Whakawehea ngā taha e rua ki te 111.2.
x=\frac{500}{1112}
Whakarohaina te \frac{50}{111.2} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{125}{278}
Whakahekea te hautanga \frac{500}{1112} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{125}{278}+y=100
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=100-\frac{125}{278}
Tangohia te \frac{125}{278} mai i ngā taha e rua.
y=\frac{27675}{278}
Tangohia te \frac{125}{278} i te 100, ka \frac{27675}{278}.
x=\frac{125}{278} y=\frac{27675}{278}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}