Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=1,x-y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
-y+1-y=6
Whakakapia te -y+1 mō te x ki tērā atu whārite, x-y=6.
-2y+1=6
Tāpiri -y ki te -y.
-2y=5
Me tango 1 mai i ngā taha e rua o te whārite.
y=-\frac{5}{2}
Whakawehea ngā taha e rua ki te -2.
x=-\left(-\frac{5}{2}\right)+1
Whakaurua te -\frac{5}{2} mō y ki x=-y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{2}+1
Whakareatia -1 ki te -\frac{5}{2}.
x=\frac{7}{2}
Tāpiri 1 ki te \frac{5}{2}.
x=\frac{7}{2},y=-\frac{5}{2}
Kua oti te pūnaha te whakatau.
x+y=1,x-y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 6\\\frac{1}{2}-\frac{1}{2}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{7}{2},y=-\frac{5}{2}
Tangohia ngā huānga poukapa x me y.
x+y=1,x-y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+y=1-6
Me tango x-y=6 mai i x+y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+y=1-6
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=1-6
Tāpiri y ki te y.
2y=-5
Tāpiri 1 ki te -6.
y=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x-\left(-\frac{5}{2}\right)=6
Whakaurua te -\frac{5}{2} mō y ki x-y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{5}{2}=6
Whakareatia -1 ki te -\frac{5}{2}.
x=\frac{7}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
x=\frac{7}{2},y=-\frac{5}{2}
Kua oti te pūnaha te whakatau.