Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=0,3x-y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y
Me tango y mai i ngā taha e rua o te whārite.
3\left(-1\right)y-y=6
Whakakapia te -y mō te x ki tērā atu whārite, 3x-y=6.
-3y-y=6
Whakareatia 3 ki te -y.
-4y=6
Tāpiri -3y ki te -y.
y=-\frac{3}{2}
Whakawehea ngā taha e rua ki te -4.
x=-\left(-\frac{3}{2}\right)
Whakaurua te -\frac{3}{2} mō y ki x=-y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3}{2}
Whakareatia -1 ki te -\frac{3}{2}.
x=\frac{3}{2},y=-\frac{3}{2}
Kua oti te pūnaha te whakatau.
x+y=0,3x-y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 6\\-\frac{1}{4}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{2},y=-\frac{3}{2}
Tangohia ngā huānga poukapa x me y.
x+y=0,3x-y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3y=0,3x-y=6
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x-3x+3y+y=-6
Me tango 3x-y=6 mai i 3x+3y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+y=-6
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=-6
Tāpiri 3y ki te y.
y=-\frac{3}{2}
Whakawehea ngā taha e rua ki te 4.
3x-\left(-\frac{3}{2}\right)=6
Whakaurua te -\frac{3}{2} mō y ki 3x-y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{9}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=\frac{3}{2}
Whakawehea ngā taha e rua ki te 3.
x=\frac{3}{2},y=-\frac{3}{2}
Kua oti te pūnaha te whakatau.