Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=-1,4x-2y=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y-1
Me tango y mai i ngā taha e rua o te whārite.
4\left(-y-1\right)-2y=-16
Whakakapia te -y-1 mō te x ki tērā atu whārite, 4x-2y=-16.
-4y-4-2y=-16
Whakareatia 4 ki te -y-1.
-6y-4=-16
Tāpiri -4y ki te -2y.
-6y=-12
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -6.
x=-2-1
Whakaurua te 2 mō y ki x=-y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3
Tāpiri -1 ki te -2.
x=-3,y=2
Kua oti te pūnaha te whakatau.
x+y=-1,4x-2y=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\4&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}1&1\\4&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}-1\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\4&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}-1\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}-1\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-4}&-\frac{1}{-2-4}\\-\frac{4}{-2-4}&\frac{1}{-2-4}\end{matrix}\right)\left(\begin{matrix}-1\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-1\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{6}\left(-16\right)\\\frac{2}{3}\left(-1\right)-\frac{1}{6}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=2
Tangohia ngā huānga poukapa x me y.
x+y=-1,4x-2y=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4y=4\left(-1\right),4x-2y=-16
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+4y=-4,4x-2y=-16
Whakarūnātia.
4x-4x+4y+2y=-4+16
Me tango 4x-2y=-16 mai i 4x+4y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+2y=-4+16
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=-4+16
Tāpiri 4y ki te 2y.
6y=12
Tāpiri -4 ki te 16.
y=2
Whakawehea ngā taha e rua ki te 6.
4x-2\times 2=-16
Whakaurua te 2 mō y ki 4x-2y=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-4=-16
Whakareatia -2 ki te 2.
4x=-12
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 4.
x=-3,y=2
Kua oti te pūnaha te whakatau.